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1 Introduction

1.1 What This is About

The Event Libraries are a collection of utilities and assorted shared libraries that
deal with data in the sSPHENIX data format. All access to the data is typically
achieved through those libraries.

The software suite has its roots at the CERN WAO98 experiment, and was subse-
quently improved and given its final shape for the PHENIX experiment at RHIC.
The software is now in use for the sSPHENIX experiment. It is also used by a large
number of smaller experiments or external groups that use the companion data ac-
quisition system, “RCDAQ”. The data written by RCDAQ use these event libraries
to access and analyze the data.

The package consists of standalone programs, most prominently the dilist, ddump,
and dpipe utilities, to inspect and work with the data from the command line, and
a set of shared libraries that extends the capabilities of the ROOT package to read
data in this format.

pmonitor is an online monitoring and analysis package that builds on top of the
Event Libraries for online monitoring and data analysis. pmonitor is often used as
the monitoring /analysis framework for data taken with the RCDAQ data acquisition
system.

I first introduce some information that will make it easier to understand the utilities
and libraries, and their capabilities.

2 The sPHENIX Data Format: Buffers, Events
and Packets

2.1 Packets

The “nucleus” of the format is a data packet. Generally speaking, a given DAQ
setup consists of a selection of devices, often referred to as the readlist, that are all
read out together and are put together into a structure we call an Event when a
trigger arrives. That is what one gets from a classic event-centric data acqusition
system — one trigger, one event.

For a very simple example, let’s assume that we are reading out a SRS system
together with a DRS4 evaluation board. This was a setup we used in 2013 at the
Fermilab Test Beam Facility. The SRS system read out a number of GEM detectors,
while the DRS4 system digitized the signals from the facility’s Cherenkov detectors.
The Cherenkovs allowed us to distinguish between different particle types in the
beam.

Each of the devices in the data acquisition readlist contributes a Packet to the
Event that is being assembled as the result of the trigger. The DAQ system “visits”
each device in that readlist and asks for its contribution. We have a few devices



implemented that can contribute more than one packet to the event, and it is also
possible that a device contributes nothing at all if it finds that all of its channels are
zero-suppressed. But most often, one will find one packet from each of the devices
in the readlist in a given event.
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Figure 1: The hierarchy of data stored in a file. Each readout unit (in this example
the SRS and the DRS4) generates a packet. The packets from all devices in the
readlist are collected in an Event. Each unit can be, and usually is, of variable
length.

This is shown in Fig. Each of our two readout devices here (the SRS and the
DRS4) contribute one packet to each Event. In this example, each Event consists
of two packets.

The Packet from each device has an identifier that uniquely identifies its origin,
called the packet id. This should be a never-changing number (as we will see in
a moment, we used packet id 1010 for the SRS, and id 1020 for the DRS4) that
identifies the device in question and, by extension, a set of readout channels of the
larger detector system that may be read out with many devices.

For example, the PHENIX electromagnetic calorimeter was read out with about
180 “Front-End Modules” (FEM), each holding 144 individual channels. Each of
the Front-End Modules contributed one packet to the Event. Such a PHENIX event
had about 3200 packets from all detector sytems combined, and the same number
of unique packet ids. Since the mapping of packet id to a particular FEM never
changed, we would often refer to a given FEM by its packet id (“we had a problem
with 4072 last night”).

Each Packet has another header field, historically called the hitformat, that identifies
a decoding algorithm to unpack the data in a way that they can be accessed through



a set of standard APIs.

Different from the packet id, this hitformat has changed for several packet types
from various detectors over the lifetime of the PHENIX experiment several times.
The PHENIX Electromagnetic Calorimeter FEMs, for example, have seen about 8
format changes, usually to achieve a denser or faster packaging of the data in the
packet payload. During the commissioning phase of new electronics one typically
adds more information to be able to certify the correctness of the received data, such
as checksums and other debug-style information, and also uses less sophisticated
firmware for packaging the data. As one gains confidence that everything works as
specified, one applies a denser packaging with more elaborate firmware.

Each time the format changes for a given readout device changes, a new hitformat
identifies a new decoding algorithm that will present the data to the user (or the
analysis code) in ezactly the same way as before, and such a change is completely
transparent to the user code. No user code will break as a result of a hitformat
change.

To summarize, the packet header has two important fields:

o the packet id says what is stored in the packet;

o the hitformat says how the payload is stored.

Although I said above that this “Events containing Packets” paradigm is what one
typically gets from a event/trigger-centric data acquisition system with an event
builder, our format is equally well suited to store streaming data, also known as a
trigger-less readout. This is what sSPHENIX will use for the readout of the tracking
system, using the same format. Instead of making per-device packets for each trig-
ger, we packetize the continuously streaming data off a detector, storing them either
as consecutive packets in one event structure, or as individual packets in multiple
events, or a combination of both. Such an Event now covers a certain time range,
rather than a trigger. This is analogous to telecom Voice-Over-Ip applications,
where audio is packetized and sent through networks in a similar way.

Using the dlist utility that is described later in section 3} we examine the aforemen-
tioned data file from 2013 with the SRS and the DRS4 packets. The dlist utility
lists the packets that it finds in the first data event:

$ dlist beam_0000004094-0000.evt
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)

You can see the two packets from the two devices (the SRS and the DRS). The
first number is the packet id, followed by the length in Dwords (32-bit words), the
packet type (-1), and the hitformat number with a mnemonic that describes that
number. The only packet type in sSPHENIX is that “sPHENIX Packet” denoted
“-1”; there are a number of legacy packets that are currently still supported while
we transition to a full sSPHENIX implementation.

There are a number of event types defined, which denote a different set of devices
that are read in that event. Most types are considered data events, and some of



them are referred to as special events. The use of different event types is easiest
explained — although they are not used at RHIC — with the spill-on and spill-off
events. At accelerators that have a spill structure, such as the AGS, or the CERN
SPS, one would usually generate type 1 events that read out the actual experiment.
In addition, it is often necessary to obtain information about the most recent spill,
the intensity, effective spill length, and so on. At the begin and end of each spill one
generates spill-on and spill-off events, respectively, which read and reset a number
of scalers that count the beam signals from some start counter during the spill,
together with other relevant information. The actual detector is not read out in
those events. Different event types read and store the data from different readout
units.

The most important special events are the so-called begin-run event, the end-run
event, and the luminosity event that denotes the beginning of a new luminosity
block. The begin- and end-run events are special events that usually contain meta-
data about the data file, and so embed important information about the dataset in
the data file itself.

It is guaranteed that the begin-run event is the first event seen from a given run,
and the end-run event is the last event. In addition to the meta data they usually
contain, they serve as a convenient marker for continuously running online moni-
toring processes that a new run has begun, or that a run has ended. On receipt
of a begin-run event, such a monitoring process could, for example, clear all its
monitoring histograms, or could store all such histograms on receipt of the end-run
event.

Here are the defined event types:

Table 1: The currently defined event types.

Event type \ meaning \ comment
1 | Data Event Readout of detector hardware
2 | Streaming Data Event | Streaming Readout of detector hardware
3 ...7 | Data Events reserved for future use
8 | Spill-On Event
9 | Begin-Run Event Automatically generated
12 | End-Run Event Automatically generated
14 | Scaler Event Scaler information
15 | Lumi Event Denotes the start of a new Luminosity Block
16 | Spill-Off Event

The Spill-on and Spill-off events have no application in RHIC running, but are often
used during test beam data taking at accelerators with a spill structure.



3 Command Line Utilities

The event libraries come with a set of ready-made command line utilities that make
it easy to inspect and manipulate the event data.

In your everyday work with sSPHENIX data, you’ll find that a lot can be accom-
plished with these ready-made tools. Very often, someone comes up with a new
creative way to use them in combination with perl, grep, sed, wc, and so on to get
some answers about the data structure without actually programming anything.

The most versatile tools we have are

o the dlist utility, which lets you list the packets contained in a given event;

e the ddump utility, which lets you dump and look at the contents of a packet
in various ways;

o the dpipe utility, which copies events from one destination to another with a
lot of flexibility; you can also use this to sift through a data stream in a simple
way.

All utilities have a -h switch to provide some online help.

Let’s start with dlist. It lists the packets it finds in the Event, and calls the packets’
identify() function on each of them, so you’ll see a short identification message for
each packet found.

dlist can open any known input stream, and its default is to open a data file.
Alternatively, it can open an online monitoring stream from the data acqusition.
There is also a “test” stream that generates made-up events with certain predictable
properties. This test stream lets you explore some aspects of what is described here
and also in the next chapter without the need for an actual data file.

3.1 dlist
We have briefly seen the output of the dlist utility before:

$ dlist beam_0000004094-0000.evt
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)

dlist, ddump, and dpipe have a large number of options to modify their behavior.
As much as possible, they are using the same event and input selection switches.

By default,

e they display information from data events only — one needs to explicitly ask
ask for other event types. This is the most commonly desired behavior. Since
the begin-run event is the event number 1, one normally sees event number 2,
unless one asks for other event types.

e They display only one event, and then exit.



Using the command line options, one can override the defaults in many different
ways. An important option is the “-i” (“identify”) option, which asks the events it
selects to print a one-line identification:

$ dlist -i beam_0000004094-0000.evt

-- Event 2 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)

You can see that we are listing the packets in event number 2, the first data event.

The event selection determines the first event to display, and the utilites show as
many events as specified from that event on, obeying the other selection criteria
(default is just 1 event).

One can select a particular event with either the “-e n” (select event number n), or

“.cn” (select the n*® event). These selections are not normally equivalent; the “-e”
asks for the event number, which is a property of the event in question, while “-c”
uses the position of the event in the data file. An event retains its number property
and other identifying information when copied to a different file. If you ask for an
event number that is not found in the data file, you run through the entire file and
get no output. Still, since the combination of a run number and the event number
uniquely identifies an event, it is more common to use the “-e” switch.

Here I select the event with the number 10:

$ dlist -i -e 10 beam_0000004094-0000.evt

-- Event 10 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)

The “-n n” switch instructs dlist to display information about n events total, with
the default being 1 as in the previously shown examples.

$ dlist -i -e 10 -n 5 /mac_home/data/srs_with_drs/beam_0000004094-0000.evt
-- Event 10 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)
-- Event 11 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)
-- Event 12 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)
-- Event 13 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)
-- Event 14 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)

Specifying “-n 0”7 means “all events”. Be warned, though, that certain types of
streams, such as the test event stream, or an online monitoring stream, do not have
an “end”. There are still applications for an “all events” dlist (or later, ddump) with



those streams, for example, if you are looking for a particular event with certain
properties.

The “-t” switch selects what kind of event types are shown. “-t” can take the
numeric event type as shown in table [[I For example, I can explicitly select the
begin-run event by

$ dlist -i -t 9 /mac_home/data/srs_with_drs/beam_0000004094-0000.evt
-- Event 1 Run: 4094 length: 641 type: 9 (Begin Run Event) 1381104863
Packet 900 491 -1 (sPHENIX Packet) 4 (IDCSTR)

Packet 910 142 -1 (sPHENIX Packet) 4 (IDCSTR)

As you can see (and as described above), this event has a completely different packet
content from data events.

We can also select the end-run event type 12 (which forces dlist to go through the
entire data file):

$ dlist -i -t 12 beam_0000004094-0000.evt
-- Event 3438 Run: 4094 length: 8 type: 12 (End Run Event) 1381105268

Here we get only the event identification output, because this event does not contain
any packets in this data file.

-t also takes “A” for all event types, or “S” for any special event type:

$ dlist -i -t A -n 3 beam_0000004094-0000.evt

-- Event 1 Run: 4094 length: 641 type: 9 (Begin Run Event) 1381104863
Packet 900 491 -1 (sPHENIX Packet) 4 (IDCSTR)

Packet 910 142 -1 (sPHENIX Packet) 4 (IDCSTR)

-- Event 2 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)

-- Event 3 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)

or (remember that this is an expensive command; we are reading through the entire
data file)

$ dlist -i -t S -n 0 beam_0000004094-0000.evt
-- Event 1 Run: 4094 length: 641 type: 9 (Begin Run Event) 1381104863
Packet 900 491 -1 (sPHENIX Packet) 4 (IDCSTR)
Packet 910 142 -1 (sPHENIX Packet) 4 (IDCSTR)
-- Event 3438 Run: 4094 length: 8 type: 12 (End Run Event) 1381105268

This data file does not contain any other special event types.

By the way, if you wonder what the two “IDCSTR” packets in the begin-run event
are, head over to the RCDAQ manual where I describe that most setups capture
RCDAQ’s own setup script in packet 900. This has become a convention, and it is
quite convenient if one follows it.

Finally, there are a number of switches that determine the type of input stream we
are dealing with here. The default is a file as shown before. One can select a “test
stream” with the “-T” option, and an RCDAQ online monitoring stream with “-r”.



The “test stream” allows us to explore some of the features of the monitoring package
and run through the examples without the need for an actual data file (which might
not always be easy to obtain).

$ dlist -T

Packet 1001 24 -1 (sPHENIX Packet) 6 (ID4EVT)
Packet 1002 36 -1 (sPHENIX Packet) 5 (ID2EVT)
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)

The test stream only produces data events, no special events. We’ll get to the role
and purpose of the 3 packets in a minute.

The “-r” switch connects to a running instance of RCDAQ and requests an online
event stream that is normally used for online monitoring. Using this with dlist (or
ddump) is a convenient way to inspect events without logging data to disk, and so
avoid cluttering your storage system with data during the setup phase. The “-r”
switch takes the hostinfo (DNS name or IP address) of the machine running RCDAQ),
and defaults to “localhost”. Very often, the monitoring and setup is performed on
the same machine that is taking the data. Here is RCDAQ running on a machine
called “mlpvm1”, and I can do

$ dlist -i -r mlpvml
-- Event 5599 Run: 4 length: 16 type: 1 (Data Event) 1555272250
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)

When I execute this on the machine itself (localhost), I can omit the name:

$ dlist -i -r
-- Event 8401 Run: 4 length: 16 type: 1 (Data Event) 1555272266
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)

“dlist -h” lists a few more options (such as “-I”) that are useful if you are debugging
a new packet format (a new hitformat). They are considered expert-level switches.

3.2 ddump

While dlist lists the packet in an event, ddump displays the contents of the packets
in an interpreted and packet type-specific way. Each packet type (that is, one for
each of the about 400 defined hitformats) has a format-specific dump() function
that generates the output.

All the event selection options, the “-n” switch, and the input stream type specifi-
cations work exactly the same way as in dlist.

ddump -h gives you some instructions how to use it (as does d1ist -h). At the end
of that help, there is a list of all switches:

List of options:
-e <event number>
-c <number> get nth event (-e gives event with number n)
-n <number> repeat for n events (0: until end of stream)



-p <Packet Id>

-t <event type>

-i <print event identity>

-I <print in-depth packet identity (default is short form)>

-f (stream is a file)

-T (stream is a test stream)

-r (stream is a rcdaq monitoring stream)

-0 (stream is a legacy ONCS format file)

-g use generic dump

-d numbers are std::decimal (default std::hex) for generic dump
-o numbers are octal (default std::hex) for generic dump

-s for a generic dump, send packet raw payloadc to stdout for further manipulation
-x like -s, but also include the packet header

-v verbose

-h this message

We'll go through a few of them now.

The output from our example data file from 2013 is large, we’ll start with a test
stream:

$ ddump -T
Packet 1001 24 -1 (sSPHENIX Packet) 6 (ID4EVT)

0 | 00000000 00000001 00000002 00000003
4 | 00000004 00000005 00000006 00000007
8 | 00000008 00000009 0000000a 0000000b
12 | 0000000c 0000000d 0000000e 0000000f
16 | 00000010 00000011 00000012 00000013

Packet 1002 36 -1 (sPHENIX Packet) 5 (ID2EVT)

0 | 0000 0001 0002 0003 0004 0005 0006 0007
8 | 0008 0009 000a 000b 000c 000d 000e 000f
16 | 0010 0011 0012 0013 0014 0015 0016 0017
24 | 0018 0019 00ia 001b 001c 001d 00le 001f
32 | 0020 0021 0022 0023 0024 0025 0026 0027
40 | 0028 0029 002a 002b 002c 002d 002e 002f
48 | 0030 0031 0032 0033 0034 0035 0036 0037
56 | 0038 0039 003a 003b 003c 003d 003e 003f
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)

0 | fffffff4 fffffff9 fffffcaa 00003abf

So we see human-readable presentations of the 3 packets in that made-up event.
The first packet pretends to be an ADC with 20 channels, where channel ¢ always
holds the value ¢ ( 0..19). Likewise, packet 1002 holds the value i in channel i for 64
channels. This packet internally holds 16-bit values, rather than 32-bit values for
packet 1001. This makes the test data suitable for testing different aspects of the
data handling, sich as the proper byte swapping, transfers, and a number of other
things.

The test data have in the past been used to make simple checks of the proper
working of the analysis code, because the mean of the signals of a given channel
must be the channel number when one uses packet 1001 or 1002.

Packet 1003 holds 4 32-bit values, which are 4 different random numbers of different

10



scales with a gaussian distribution with mean = 0 and a RMS = 10,100,1000, and
10000 for the 4 “channels”.

While these are pseudo-random numbers, they always start with the same seed value
and give a predictable sequence of numbers, which is suitable for most “training”
applications we have in mind here. These are not high-quality random sequences
and should not be used for applications that require those.

Usually, our events have a large number of packets. You typically want to select a
particular packet, or a small number of them. That is accomplished with the “-p”
option. You can specify a single packet number, a comma-separated list of packets,
a range specifier with a minus sign, or any combination thereof. These are examples
of valid packet id selections:

ddump -p 1003

ddump -p 1003,2000,2006

ddump -p 1001,1003,2000-2006

ddump -p 1001,1002,1003,2000-2006,3005-4000,5001,5002,6000-6005

The selection must not contain spaces.

We will be using the “-p 1003” option to see the random numbers in packet 1003
for a number of events:

$ ddump -T -p 1003 -n 10
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | fffffff4 fffffff9 fffffcaa 00003a5f

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | 00000007 ffffffde ffffff05 ffffdcd4d

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | 00000006 00000018 00000157 ffffb5a3

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | 0000000e ffffffdb 000003d6 ffffefla

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | 0000000c ffffff84 000003fa 0000192e

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | 00000008 00000031 fffffdbe ffffclcc

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | ffffffff 000000a0 00000006 00004a8d

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | 00000004 00000067 fffff887 fffffc89

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | fffffffe ffff£ff08 0000066f 00001dd9

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | fffffff8 ffffffae ffffff48 000046bb

where each event delivers different numbers in that packet.
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There are different ways of displaying the data. By default, one gets the standard,
interpreted, and as much as possible human-readable presentation of the data, which
in the case of the “ID2EVT” and “ID4EVT” hitformats in the test events happens
to be a simple hexadecimal listing. I will show you better examples of the usefulness
of these tailored, format-specific presentations in a minute.

ddump can also provide a simple hex-dump of the data, called a “generic” dump, and
can also make a generic dump in decimal format. The generic format is requested
with the “-g” option, which defaults to hexadecimal, and “-d” requests a decimal
generic dump.

We can see this here, where we display the same random number sequences in
decimal:

$ ddump -T -p 1003 -g -d -n 10

Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
o | -12 -7 -854 14943
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | 7 -42 -251 -9004
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | 6 24 343 -19037
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0| 14 -37 982 -4326
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | 12 -124 1018 6446
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
o | 8 49 -674 -15924
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
o | -1 160 6 19085
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0| 4 103 -1913 -887
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | -2 -248 1647 7641
Packet 1003 8 -1 (sPHENIX Packet) 6 (ID4EVT)
0 | -8 -82 -184 18107

Let’s go back to the file taken in 2013 with the DRS4 and the SRS data:

$ dlist -i beam_0000004094-0000.evt

-- Event 2 Run: 4094 length: 28396 type: 1 (Data Event) 1381104934
Packet 1010 23262 -1 (sPHENIX Packet) 70 (IDSRSVO1)

Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)

and ddump the DRS4 packet. The chosen presentation of the data is one line per

sample (1024 in this case), with columns for the sample number, the time, and then
the sample values of the 4 inputs.

12



I have cut out a number of lines and show the beginning and the end of the long
output, and in the middle a section where one can actually see a negative-going
pulse in the data of channel 1, around sample 292:

$ ddump -p 1020 beam_0000004094-0000.evt
Packet 1020 5126 -1 (sPHENIX Packet) 81 (IDDRS4V1)
Samples 1024 enabled channnels: o 1 2 3

ch | time chO0 chi ch2 ch3
0 | 0 -2.2 -1.4 -1.3 -0.4
1] 0.992839 -0.8 -2.5 -1.8 -1.7

2 | 1.98568 -2.6 -2.5 -1 -0.1
3| 2.97852 -1.8 -1.5 -3.5 -3.2

4 | 3.97135 -2 -1.2 -1.2 -1.1

5 | 4.96419 -2.9 -2.1 -3.6 -3.3

6 | 5.95703 -1 0.3 -1.4 -1.1
7| 6.94987 -2.9 -2.9 -3.7 -2.4

8 | 7.94271 -1.8 -2 -1.5 -0.9

9 | 8.93555 -1.8 -2.8 -3.6 -2.5
10 | 9.92839 -2.8 -2.7 -3 -2.4
11 | 10.9212 -3.1 -4.1 -3.7 -4.2
12 | 11.9141 -2.9 -2.9 -0.7 -0.9
13 | 12.9069 -4 -3.9 -2.7 -3.5
14 | 13.8997 -3.5 -2.8 -2.6 -1.9
287 | 284.945 -0.6 -0.6 -43.8 -66.8
288 | 285.938 -2.1 -2.1 -40.6 -58.7
289 | 286.93 -0.4 -1.4 -37.2 -54.3
290 | 287.923 -1.6 -1.4 -30 -47.5
291 | 288.916 -0.2 -4.9 -28.6 -43.8
292 | 289.909 -2.1 -17.4 -24.4 -34.9
293 | 290.902 0 -38.5 -24.6 -31.2
294 | 291.895 -1 -85.5 -21.1 -26.1
295 | 292.887 0.1 -189.8 -20.2 -25.3
296 | 293.88 -1.5 -272.6 -18 -23.3
297 | 294.873 0 -392.6 -18.3 -19.3
298 | 295.866 -4 -402.5 -16 -18
299 | 296.859 -3.7 -378.3 -15.4 -19.5
300 | 297.852 -4.5 -318.7 -14.9 -13.2
301 | 298.844 -3.6 -271.8 -14.4 -12.4
302 | 299.837 -3.1 -204.3 -10.9 -9.8
303 | 300.83 -1.1 -154.7 -12.6 -9
304 | 301.823 -2.1 -134.8 -9.5 -7.9
305 | 302.816 1 -103.3 -10.8 -8.5
306 | 303.809 0.7 -84.2 -7.9 -6.6
307 | 304.801 1.5 -70.1 -8.7 -6.7
308 | 305.794 1.2 -59.6 -7.2 -3.6
309 | 306.787 0.6 -56.4 -7.9 -7.2
310 | 307.78 0.1 -52.3 -7.1 -3.3
311 | 308.773 -0.4 -52.3 -9.2 -7
312 | 309.766 -2.1 -52 -7.8 -6.3
313 | 310.758 -1.8 -47.4 -9.6 -9.6
314 | 311.751 -3.6 -46.3 -8.8 -6.3
315 | 312.744 -3.5 -42.6 -10.6 -8.7
316 | 313.737 -6.1 -38.8 -9.5 -7.4
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1018 | 1010.71 -2.9 -2 -2.4 -3.1
1019 | 1011.7 -5.2 -3.7 -6.8 -7.5
1020 | 1012.7 -5.1 -2.8 -3 -2.6
1021 | 1013.69 -4.4 -3.5 -3.6 -3.7
1022 | 1014.68 -4.9 -1.8 -2.5 -1.9
1023 | 1015.67 -2.8 -2.1 -3.1 -2.8

Fig. 2] shows that same waveform as a plot.

waveform channel 1
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Figure 2: The plot of the waveform of channel 1 shown in the DRS4 ddump output.

The SRS data in the same event file have a completely different format, and ddump
presents the data in a very different way suitable for the composition of the data.
The SRS system has up to 16 so-called APV25 Hybrids with 128 individual channels
each, and each channel can sample a waveform with up to 28 samples (the DRS4
can sample up to 1024 samples, as shown above).

The SRS-specific dump function displays each waveform across the screen, and one
line per channel, one block of such 128-channel data for each hybrid. I am showing
here a dump from a different data file, one where I set the Hybrids up in “test pulse
mode”; where they auto-generate known test pulses on a number of channels. This
can be used to test the proper functioning of the Hybrids. The test pulses can be
seen in figure [3] which shows the channel numbers vs sample number, with the z
axis showing the pulse height.

In this case, we selected the maximum of 28 samples, and the SRS system had 4
hybrids connected.

I only show part of one block of the output; the entire output consists of 4 such
blocks:

ddump -p 1020 srs-00000001-0000.evt
Packet 1020 8122 -1 (sPHENIX Packet) 70 (IDSRSVO1)

14



Figure 3:

sample vs channel baseline corrected
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This is the visualization of the SRS dump shown in the text. The plot
shows the channel numbers vs sample number, with the z axis showing the pulse
height. This plot applies a baseline correction and also inverts the ADC values, so
the negative-going pulses show up as positive values.

Number of Hybrids: 4

Framecounter: 0
HDMI Channel: O
Description: ADC
Words: 4050
Time samples: 28
Sample 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Addr 156 159 153 152 128 129 135 132 128 131 129 128 224 225 227 224 228 231
Error [ [ [ [ 0 0 0 0 [ 0 0 0 0 0 0 [ [ o
0 | 3060 3049 3206 3155 3094 3103 3216 3169 3148 3146 3203 3050 3026 3011 3091 3163 3106 3026
1 | 3019 2993 3160 3165 3108 3057 3174 3148 3091 3046 3125 3042 3059 2979 3039 3152 3064 2965
2 | 3011 2980 3142 3156 3091 3052 3175 3163 3111 3064 3133 3060 3075 2967 3028 3140 3075 2973
3 | 3009 2965 3113 3146 3093 3045 3171 3149 3081 3034 3117 3029 3023 2956 3004 3102 3030 2959
4 | 3012 2802 2365 2097 2073 2157 2360 2456 2540 2613 2769 2761 2821 2797 2879 2995 2960 2902
5 | 3007 2969 3113 3176 3116 3076 3195 3181 3122 3060 3126 3048 3056 2986 3042 3147 3036 2953
6 | 2989 2942 3119 3147 3074 3038 3169 3135 3087 3034 3123 3022 3014 2955 3008 3093 3033 2940
7 | 3016 2977 3149 3175 3095 3048 3176 3147 3066 3017 3098 3013 3039 2974 3021 3128 3052 2966
8 | 3032 2990 3154 3175 3126 3073 3176 3169 3113 3063 3158 3086 3086 3000 3054 3159 3085 2983
9 | 2997 2976 3132 3168 3065 3024 3160 3135 3087 3048 3111 3018 3042 2951 3006 3105 3024 2950
10 | 3001 2955 3120 3157 3073 3045 3175 3154 3092 3030 3111 3017 3016 2950 3021 3128 3038 2946
11 | 2992 2942 3104 3168 3088 3029 3169 3152 3080 3044 3121 3037 3050 2971 3015 3124 3041 2945
12 | 2967 2751 2347 2095 2070 2147 2367 2451 2524 2589 2743 2735 2804 2792 2872 2999 2973 2897
13 | 2995 2944 3077 3150 3079 3070 3175 3155 3086 3046 3120 3039 3055 2970 3009 3114 3038 2958
14 | 3018 2973 3125 3130 3036 3007 3165 3146 3086 3016 3076 2991 2999 2939 3002 3096 3039 2953
15 | 3004 2964 3116 3167 3075 3032 3164 3138 3072 3037 3115 3023 3037 2963 3006 3101 3031 2943
16 | 3014 2986 3151 3166 3094 3043 3168 3141 3066 3027 3111 3050 3058 2969 3019 3140 3072 2980
17 | 2991 2966 3127 3167 3072 3017 3139 3093 3052 3024 3108 3007 3011 2935 2978 3089 3015 2941
18 | 2987 2957 3118 3151 3056 3020 3148 3118 3054 2995 3078 3003 3018 2948 2999 3091 3017 2933
19 | 3005 2969 3135 3168 3093 3045 3160 3131 3063 3031 3109 3027 3038 2970 3008 3089 3014 2935
20 | 2996 2781 2355 2114 2086 2147 2359 2450 2532 2603 2751 2759 2826 2797 2875 3001 2950 2896
21 | 3020 2977 3115 3161 3092 3056 3170 3149 3089 3060 3123 3040 3045 2964 3013 3109 3033 2949
22 | 2976 2943 3107 3132 3055 3024 3161 3118 3074 3020 3087 3018 2996 2939 3003 3121 3052 2949
124 | 2960 2876 2875 2813 2821 2798 2921 2970 2922 2903 2975 2911 2931 2892 2953 3048 2963 2892
125 | 2965 2920 3053 3068 2986 2958 3102 3067 3005 2984 3075 2980 2985 2915 2960 3042 2969 2903
126 | 2977 2953 3093 3103 3017 2987 3106 3091 3041 3008 3086 2996 3006 2927 2976 3077 3017 2943
127 | 2781 2789 2802 2807 2766 2786 2801 2805 2852 2871 2864 2815 2831 2776 2767 2787 2817 2819
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One can see the test pulses in the numbers starting around sample 2 in
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12, 20, and so on.

Let me mention two more switches to ddump, -s and -x. Rather than doing anything
with the packet’s data, these switches make ddump put the raw data out to stdout,
and you can pipe the into any utility to work with the data, such as od. The
aforementioned hexadecimal, decimal, or octal dumps are just a tiny subset of what,
for example, od can do, and rather than re-inventing the functionality, this allows
us to work with the data in a myriad of ways. The difference between -s and -x is
that the latter also includes the packet header, not just the packet’s payload as -s
does.

Let me show one example of where this was really useful. Here is a file where we
read out our DREAM electronics at Fermilab, and let’s say that we are debugging
the decoding (not that you as the end user would need to do that). The generic
dump shows

$ ddump -g dream-00002190-0000.evt | more
Packet 3000 19174 -1 (sPHENIX Packet) 103 (IDDREAMVO)

0 ccddaabb 5e176400 64600000 8b610160
4 483403e0 97b260b9 76816830 64815001
8 5b815a01 5b817a81 5£f015181 52816301
12 57815781 4£815881 71016481 49816881

20 64813f01 6b815481 39015181 60014701
24 64815501 66015b81 5a015901 54814381
28 34815881 43815281 50014981 5d815601
32 51815601 4b016301 3d816301 4c813f01

|
|
|
|
16 | 64815001 69016b81 4a817681 93015001
|
|
|
|

There are two problems. First, the DREAM data are inherently 16bit values, and
the firmware formats them internally in big-endian byte-ordering. At a glance, when
one compares the data with the format descritption, it is not always easy to identify
the DREAM-internal markers that denote the different fields. Here is a better view
of the raw data as hex dump that lets you see the field values in their “natural”
representation:

$ ddump -s -g dream-00002190-0000.evt | od -t x2 --endian=big | more
0000000 bbaa ddcc 0064 175e 0000 6064 6001 618b
0000020 €003 3448 b960 b297 3068 8176 0150 8164
0000040 O15a 815b 817a 815b 8151 015f 0163 8152
0000060 8157 8157 8158 814f 8164 0171 8168 8149
0000100 0150 8164 816b 0169 8176 814a 0150 0193
0000120 013f 8164 8154 816b 8151 0139 0147 0160
0000140 0155 8164 815b 0166 0159 015a 8143 8154
0000160 8158 8134 8152 8143 8149 0150 0156 815d
0000200 0156 8151 0163 014b 0163 813d 013f 814c
0000220 0144 814a 8162 8126 813d d158 5150 5c80
0000240 5e09 d92e clfc 3453 398c b2b9 b268 0114
0000260 0127 811a 012d 0122 8152 8108 0142 8120
0000300 8145 0112 815b 8065 8000 8000 0127 012d

Of course, the DREAM format has its dedicated way of displaying the information
for easy reading:
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$ ddump /mac_home/data/dream/dream-00002190-0000.evt | more
Packet 3000 19174 -1 (sPHENIX Packet) 103 (IDDREAMVO)
Nr of FEUs: 1
FEU_ID: 0 100

DreamChips: 8 enabled: 1 1 1 1 1 1 1 1
Nr of samples: 64

Pedestal subtracted 0

Zero suppressed 0

Common Noise supp. 0

---- Dream chip 0 ----

ch-> o ¢t 2 3 4 5 6 7 8 9 10
smplel 32 33 34 35 36 37 38 39 40 41 42

43

13
45

46

48

49

18

19

20

21

22

23

24

25
57

26
58

27
59

60

29
61

62

31
63

0 | 374 336 356 346 347 378 347 337 351 355 338
- 313 327 352 341 356 347 358 345 346 323 340
1| 366 332 346 344 346 376 344 334 348 350 341
- 318 326 350 340 360 347 360 341 346 333 341
2 | 366 338 338 341 349 376 347 330 348 355 344
- 326 332 349 344 361 352 358 346 345 334 343
3 | 357 340 333 339 351 374 348 327 352 347 339
- 318 329 355 344 360 351 356 346 343 327 342
4 | 348 340 336 338 354 370 357 328 356 339 340
- 319 326 350 342 356 354 358 342 345 323 342

343
344
344
337
346
337
338
336
334
333

343
308
342
306
342
308
337
304
339
297

344
338
346
336
345
339
348
334
344
331

335
323
331
321
329
322
336
323
338
327

Especially the ddump command has in the past

like.

4 pmonitor

pmonitor is an online monitoring and analysis package that builds on top of the

356
329
360
329
353
337
343
334
340
336

proven very versatile to quickly
inspect the data packets. Simple-minded analyses have been performed just with a
combination of ddump, and other parsing utilities such as grep, awk, sed, and the

369
336
367
335
368
330
364
328
363
327

360
342
359
348
361
351
365
349
364
343

329
349
328
347
330
344
332
343
335
352

336
342
334
345
333
347
327
346
335
337

356
337
350
338
356
346
352
350
351
350

363
355
366
353
368
353
363
349
359
344

361
331
359
332
356
336
351
342
348
340
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355
373
357
374
363
373
361
371
354

330
317
332
320
326
320
331
313
323
313

336
319
327
320
328
332
327
328
331
322

Event Libraries for online monitoring and data analysis in the ROOT environment.

pmonitor is often used as the monitoring/analysis framework for data taken with

the RCDAQ data acquisition system.

What does one want in an online monitoring system? Let’s first say what we do not
want: A system where you analyze a number of events, for, say, 20 minutes, and

only then get to see your results. That clearly does not qualify as online monitoring.

Rather, one would want a system where at any time one can display, clear, fit, and
in general interact with histograms while they are being filled.

That does not prevent the user from setting up more static “billboard-style” displays
that cycle through a number of displays, but one still wants that interactivity to be
able to drill down on problems if they become apparent.

If one leaves the online monitoring features alone, pmonitor serves as a
feature-rich offline analysis package. The online monitoring process can,
without modifications, replay files, and form the basis for the eventual

I

offline, batch-style analysis.

4.1 Getting started

Very often, you inherit an already existing pmonitor project from someone, and

adjust it to your needs. Such projects are meant to be simple and straightforward,

so if you inherit a huge project with lots of apparent dead code, consider starting
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over.

In order to get a fresh, empty project, get yourself a new, empty directory, pick a
name for your project, say, “MyTest”, and run writePmonProject.pl:

$ mkdir MyTest

$ cd MyTest

$ writePmonProject.pl MyTest
creating project MyTest

$

The directory name and project name are completely independent. You should
always choose a fresh, empty directory unless you know exactly what you are doing.
It is just easier this way.

At this point, you have a skeleton pmonitor project that doesn’t do anything useful
yet, of course. The above command gets you

$1s -1

total 16

lrwxrwxrwx 1 purschke rphenix 15 May 8 18:18 Makefile -> MyTest.Makefile
-rw-r--r-- 1 purschke rphenix 849 May 8 18:18 MyTest.Makefile

-rw-r--r-- 1 purschke rphenix 615 May 8 18:18 MyTest.cc

-rw-r--r-- 1 purschke rphenix 197 May 8 18:18 MyTest.h

-rw-r—--r-- 1 purschke rphenix 80 May 8 18:18 MyTestLinkDef.h

$

While the project doesn’t do anything useful yet, it already compiles. We will go
through the mechanics of pmonitor with this empty skeleton project for a moment.

Run “make”. It will compile everything and you will end up with a shared library
libMyTest.so that you can load in root.

$ 1s -1
total 60
lrwxrwxrwx 1 purschke rphenix 15 May
purschke rphenix 849 May
purschke rphenix 615 May

1 18:18 Makefile -> MyTest.Makefile
1
1
-rw-r—--r-- 1 purschke rphenix 197 May
1
1
1
1

18:18 MyTest.Makefile

18:18 MyTest.cc

18:18 MyTest.h

18:18 MyTestLinkDef.h

18:27 MyTest_dict.C

18:27 MyTest_dict_rdict.pcm
18:27 1libMyTest.so

-rw-r--r--
-rW-r--r--
-rw-r--r-- 1 purschke rphenix 80 May
purschke rphenix 2633 May
purschke rphenix 999 May
purschke rphenix 34144 May

-rW-r--r--
-ry-r--r——

© 0 C 00 00 0 0

“IWXIr—XIr-Xx

$

At this point, the next actions differ a bit depending on whether you are using
ROOQOT version 5 or 6. I recommend to use version 6, since a few pmonitor features
are only available in that version. We stick with the sequence for ROOT 6 for now.

For ROOT 6, you need to define an include path to tell ROOT where to look for
include files. Execute (or, to make it persistent, add it to your SHOME/ .bash_login
or other login file):

export ROOT_INCLUDE_PATH=$ONLINE_MAIN/include:$ONLINE_MAIN/include/Event:$ONLINE_MAIN/include/pmonitor
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4.2 Running pmonitor
Then fire up root, and try the following:

$ root -1

root [0] #include "MyTest.h"

root [1] .L 1libMyTest.so

Welcome to pmonitor. Type phelp() for help

Although this projects is just an empty skeleton, we can still use it to “monitor” a
few events, although we don’t actually do anthing with them yet.

We use the testEventiterator that I described before. In pmonitor, one opens
one with the command ptestopen(). We then use the pstatus() command to see
what’s going on:

root [2] ptestopen();
root [3] pstatusQ);
Not running Stream open: -- testEventiterator (standard)

So we see that we have a testEventiterator open, but we have not started any
processing of data yet (“Not running”). In order to start processing a batch of 1000
events, we use

root [4] prun(1000);

Since there is no actual analysis going on, the prun command will complete almost
instantaneously. How can we see that we are actually processing events? We use the
pidentify(3) command to request that the next 3 events print out their “identify”
information. After that, after we issue the next prun(1000) command for the next
batch of 1000 events, we see 3 lines, identifying events 1001...1003:

root [5] pidentify(3);

root [6] prun(1000);
-- Event 1001 Run: 1331 length: 76 type: 1 (Data Event) 1558100410
-- Event 1002 Run: 1331 length: 76 type: 1 (Data Event) 1558100410
-- Event 1003 Run: 1331 length: 76 type: 1 (Data Event) 1558100410

We are processing 1000 events, but we have requested only 3 events to identify
themselves; the next 997 events go by silently. But it shows that with the first
prun(1000) command we did indeed process 1000 events.

We then repeat the sequence and see that we are now processing events 2000 through
2003 — again the remaining events go by silently.

root [7] pidentify(3);
root [8] prun(1000);

-- Event 2001 Run: 1331 length: 76 type: 1 (Data Event) 1558100414

-- Event 2002 Run: 1331 length: 76 type: 1 (Data Event) 1558100414

-- Event 2003 Run: 1331 length: 76 type: 1 (Data Event) 1558100414
root [9] .q

We end this root session at this point. Here is the entire session again:
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$ root -1

root [0] #include "MyTest.h"

root [1] .L libMyTest.so

Welcome to pmonitor. Type phelp() for help

root [2] ptestopen();

root [3] pstatus();

Not running Stream open: -- testEventiterator (standard)
root [4] prun(1000);

root [5] pidentify(3);

root [6] prun(1000);

-- Event 1001 Run: 1331 length: 76 type: 1 (Data Event) 1558100410
-- Event 1002 Run: 1331 length: 76 type: 1 (Data Event) 1558100410
-- Event 1003 Run: 1331 length: 76 type: 1 (Data Event) 1558100410

root [7] pidentify(3);
root [8] prun(1000);

-- Event 2001 Run: 1331 length: 76 type: 1 (Data Event) 1558100414

-- Event 2002 Run: 1331 length: 76 type: 1 (Data Event) 1558100414

-- Event 2003 Run: 1331 length: 76 type: 1 (Data Event) 1558100414
root [9] .q

$

test histogram

h1
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Mean 0.1274
Std Dev 10.05

1

)

14

1

N

1

15}

N

=)

)
SETTT T T[T T [TI T[T [ TTT[TTT[TIT[TTT

AOHAHMM‘LNMMM

|
-30 -20 -10 0 10 20 30 40 50

test histogram

hl
Entries 11000
Mean 0.01846
Std Dev 10.01

120

100

80

6

S

40

20

TR IUPRTYP Yl IR IV PR IR PN 1 . PO
-40 -30 -20 -10 0 10 20 30 40 50

¢F
S

Figure 4: The histogram with a gaussion distribution after running 1000 events
(top), and after processing 10,000 more events (bottom).

We now add some actual analysis of the event data to the project. The generated
empty project skeleton has a few lines of commented-out code meant for this tutorial,
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which we now un-comment to get going.

Use your favorite editor and open MyTest.cc.

Un-comment line 13 so it reads TH1F *hi;.

Un-comment line 23 so we enable the creation of histogram “h1”.
Un-comment line 37 so we fill histogram “h1”.

Save the file and run “make”.

In the code, we now get the 4th value of packet 1003, the one that makes a gaussian
distribution with a RMS of 10000. Since the API call iValue(n) returns integer
values, we use the RMS=10000 value and divide it by 1000, in order to get a smooth
distribution with RMS=10.

Just as before, we open the test event stream, and run 1000 events. Then we display
histogram “h1”:

$ root -1

root [0] #include "MyTest.h"

root [1] .L libMyTest.so

Welcome to pmonitor. Type phelp() for help

root [2] ptestopen();

root [3] prun(1000);

root [4] hi->Draw();

Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name cl
root [5]

We get the display shown in Fig. [4] (top).
After we process 10,000 more events with prun (10000), the distribution gets smoother,
as shown in the lower part of Fig [

We have so far used the prun command, and were careful to always specify a number
of events (1000 and 10000), so the event loop actually ends - remember that the
test stream has no end. Had we specified prun() or the equivalent prun(0), we
would never have seen the root prompt again. With prun, the actions we specify
are executed synchronously. So we can issue the next command only after the prun
command has ended, even though the processing of even 10000 events may seem
to finish right away. (Later, convince yourself that this is true by running a much
larger number of events, 500,000 or so.)

4.3 True Online Monitoring

We will switch now to actual online monitoring as advertised at the beginning of
this chapter, and will issue pstart (). This command sends the processing of events
to the background, and we get the root prompt back right away.

Issuing pstart() here is safe — since we retain control of the command prompt,
we can always issue pstop() to end the event loop. The subsequent pstatus()
commands I issue here show an increasing number of events being processed in the
background:

root [10] pstart();
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root [11] pstatus();

Running at Event 225243 Stream open: -- testEventiterator (standard)
root [12] pstatus();
Running at Event 317125 Stream open: -- testEventiterator (standard)
root [13] pstatus();
Running at Event 396368 Stream open: -- testEventiterator (standard)

root [14] pstop();
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Figure 5: Updating the histogram while it is being filled in the background. After
the first two updates, I had reset the histogram.

Each time we click on and so update our histogram display, we see more entries in
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the histogram, as shown in Fig[f]

This is true online monitoring. At any time, we have an active root prompt and can
display or otherwise manipulate the histograms while they are being filled. After
clicking and updating twice, I issued h1->Reset (), and the filling of the histogram
started over.
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Figure 6: The effect of fitting a gaussian curve to the histogram as it is being filled.
The fitted curve fits the distribution nicely (top). But since we continue to update
the histogram, the fit curve is “left behind” when we update next (bottom).

This gets even more tangible when we fit a gaussian to the histogram:

root [21] hi1->Fit("gaus");

FCN=371.775 FROM MIGRAD STATUS=CONVERGED 55 CALLS 56 TOTAL
EDM=1.91072e-07 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 1.48104e+04 1.48711e+01 1.14626e-01 -6.31547e-06
2 Mean -1.05490e-03 8.20375e-03 7.73406e-05 7.46670e-02
3 Sigma 9.99178e+00 5.77768e-03 1.48519e-06 -4.36377e-01

root [22]

At first, the fit describes the distribution nicely. But as we update again, since the
background processing keeps updating the histogram, the fit is “left behind” (Fig@.
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4.4 Online Monitoring an Online Stream

I have set up the example so the exact same code can be run directly from the
RCDAQ data acquisition. RCDAQ comes with a pseudo device that makes packets
exactly like the test stream’s packet 1003, except that they are now generated by the
data acquisition, and you can get them by opening an online stream that requests
data from RDCAQ directly.

The RCDAQ discribution comes with a setup script setup_pmonitor_tutorial.sh
that sets RCDAQ up just for this purpose.

Execute that script, and start a run (by daq_begin or a GUI). (No need to open a
data file!)

In the monitoring process,

o issue rcdaqopen()
e issue pstart()
o for good measure, issue pstatus()

o dislay the histograms as shown in the previous chapter

4.5 Billboard-Style Displays

So far I have shown that the histogram updates each time I click on the display.
Very often, I find myself using this really interactive online monitoring. However,
often one wants “billboard-style” displays that are possibly displayed on an overhead
monitor and that update periodically.

There are two ways to accomplish this. The first (and easiest) way is to schedule
periodic updates, for example, update a particular canvas every 30 seconds. Dif-
ferent canvases can have individual refresh times. This is easiest because you can
use this method for canvases that you dynamically create, including those that are
created implicitly, for example, when you execute a “Draw()” function, as in

h1->Draw();

The downside of this method is that the updates happen asynchronously on a timer,
and are not correlated to anything else going on. Also, the updates continue even
though no events might get processed at that moment.

The other method is to schedule updates at times determined by your program,
most often in your process_event routine. In order for that to work, you need to
explicitly create a Root TCanvas in your code so the pointer to it is accessible from
your code.

pmonitor provides a user-callable function

updatePad( TVirtualPad *);

that you can call at any time to update the canvas.

For example, you could call this method in your process_event function on receipt
of special events such as the begin-run or end-run events. Let’s say that canvas_a
is a pointer to a TCanvas object:
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if ( e->getEvtType() == ENDRUNEVENT )
{

if (canvas_a) updatePad(canvas_a);

}

In addition, you could update the canvas every 500 events:

if ( (e->getEvtSequence() % 500) == 0)
{

if (canvas_a) updatePad(canvas_a);

}

The advantage is that you see the final histograms after a run ends, and see updates
every 500 events, but do not update when you are not processing events. You could
also decide to update after an “interesting” event has been found.

Once you have made a root “T'Canvas” display (that can have divisions and sub-
panels), you can request an automatic, periodic update by

pupdate(cl, 30);

c1 is the pointer to the TCanvas that you either explicitly created, or, as in the ex-
amples before, was implicitly created by issuing h1->Draw(). The above command
makes the Canvas update itself every 30 seconds. If you have multiple TCanvas
displays, you can specify individual update frequencies for each display:

pupdate(cl, 15);
pupdate(c2, 30);

It is only neccessary to give the top-level TCanvas pointer as the argument; the
update routine updates all sub-structures on the Canvas, if any. Let me also point
out that you can give a sub-pad as the argument to either method (they take a
pointer to a TVirtualPad * as their argument), and update portions of a canvas,
or, for more complex ones, update portions at different times or intervals.

For complex displays with sub-pads and especially “Lego”-style plots, make

= sure that you do not request too short an update interval. The re-drawing of
complex graphics takes time, and slows down the processing. For complex
graphics, you should not go below a 30s interval.

In order to end the automatic update for a given Canvas c1, issue

pendupdate(cl) ;

Issuing

pendupdate() ;

will end the updates for all Canvases that were updating.
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