The sPHENIX Run Control Program

Martin L. Purschke

March 11, 2023

Contents

[L__Introductionl

2__How to run Run Controll

13 Starting Run Control|

1 Introduction

The sPHENIX experiment uses a large number of instances of the RCDAQ data
acquisition program to acquire the detector data. Each RCDAQ instance typically
reads out a particular section of the detector. For example, there are 24 “sectors”
on the TPC pad planes (12 in the north and in the 12 south), so that the entire
TPC is read out with 24 RCDAQ instances on as many servers.

In total, the entire experiment will have about 60 RCDAQ instances.

In order to coordinate those RCDAQ instances, a program is needed that controls
them all from one place. This program is called Run Control, rc for short.

Much like the RCDAQ servers themselves, run control consists of a server program
that the user, script, and GUIs interact with b way of a client program.

Users familiar with RCDAQ will recognize the similarities - RCDAQ has a server,
called rcdag_server that is the one that interact with the hardware, and a client,
called redaq-client (Fig. .

RPC
Protoc

RCDAQ server

Network USB
ware

Hardware

Figure 1: The schematic overview of how the RCDAQ client/server setup works.
An arbitrary instance of clients, such as interactive commands, scripts and GUIs,
can interact with the RCDAQ system concurrently.

Similarly, run control consists of a server, rc_server that is itself controlled by its
client, rc_client. The rc_server acts like a client towards the RCDAQ instances, and
instructs all of them to execute the same function or action.

In this way one can control a large number of instances from one control process.

Run Control Server

A el r N N,

RCDAQ Server RCDAQ Server

RCDAQ Server RCDAQ Server RCDAQ Server

RCDAQ Server

RCDAQ Server RCDAQ Server RCDAQ Server

RCDAQ Server

Figure 2: The schematic overview of how the Run Control client/server setup
works, which is similar to the once of RCDAQ.

2 How to run Run Control

In order to function, the rc_server process needs to know the identity of the RCDAQ
instances it needs to control. It also needs to know the identity of the GTM unit,
and whether the GTMs are running in local or global mode.

The way the server operates on a begin-run action is the following:

e it goes through the list of RCDAQ instances and issues the programmatic
equivalent of the dag_begin -i command;

e after that, it makes another pass through the RCDAQ instances issuing a
daq_sync

e after that, all RCDAQ instances are “primed” and wait for triggers to acquire
data.

e it issues the (again programmatic equivalent) of the gtm_startrun command.

The daq_begin -i instructs RCDAQ to return immediately from the call. In this
way, all instances receive the instruction to begin data taking, but the issuer (Run
Control in this case) does not need to wait for its completion. The subsequent
daq_sync command will then wait for RCDAQ to complete the earlier command.

The effect is that all instances execute the begin-run sequences in parallel. The
first daq_sync instruction will typically wait a bit for the first RCDAQ instance to
complete the action, but the next calls will return right away because they have
executed the action in parallel.

If we assume that the process takes 10 seconds per instance, and we would execute
the command for each of the 60 instances one after the other, the begin-run action
would take 600 seconds, or 10 minutes. Conversely, the parallel execution will start
taking events in less that 15 seconds.

3 Starting Run Control

The simplest (although not really scalable) way to start run control is to list all
RCDAQ hosts on the command line, such as (assuming we run just the sSPHENIX
Hadronic Calorimeter)

rc_server sebl6 sebl7 &

From this point on, all rc_client commands will act on those 2 instances.
One usually creates a script to start the server in a reproducible fashion, redirecting
the output to a log file:

#! /bin/bash
rc_server sebl6 sebl7 > $HOME/rc.log 2>&1 &

Listing all hosts on the command line can get unwieldy for a larger number of hosts.
For that reason, the —-f option allows one to specify a file that contains the list of
the RCDAQ hosts.

So HCal.list can contain the (short) list of hosts:

sebl6
sebl7

and then we can specify

#! /bin/bash
rc_server —-f HCal.list > $HOME/rc.log 2>&1 &

With the same effect as the command above.

Multiple -f options accumulate, providing a simple way to specify multiple detec-
tor system together while preserving the ability to run them individually during
commissioning and debugging:

#! /bin/bash
rc_server -f HCal.list -f EmCal.list -f INTT.list -f MVTX.list -f TPC.list > $HOME/rc

4 GTM Interaction

As shown, the above commands implicitly interact with our GTM unit in global
mode, meaning that all enabled GTMs start together, enabling data taking from
the same beam crossings among the detectors.

If one wishes to run just one detector and in local mode (e.g. the EmCal that is
connected to GTM 5), one would issue

.log 2>&1 &

#! /bin/bash
rc_server -n 5 -f EmCal.list > $HOME/rc.log 2>&1 &

This has the effect of starting all 8 EmCal instances first and then starting GTM 5.

The -n can take multiple GTM numbers, such as -n 5,10, 13 to interact with GTMs
5 (Emcal), 10 (MBD), and 13 (LL1).

The actual GTM unit is typically consistently identified by the (always centrally
defined) env. variable $GTMHOST:

$ echo $GTMHOST
gtm.sphenix.bnl.gov

However, one can specify (and so override) the definition with the -g option:

#! /bin/bash
rc_server -n 5 -g gtml.sphenix.bnl.gov -f EmCal.list > $HOME/rc.log 2>&1 &

Finally, there are situation where one wants to run without any GTM interaction.
This is accomplished with the -x option, which instructs the server not to interact
with the GTM at all.

#! /bin/bash
rc_server -x -f EmCal.list > $HOME/rc.log 2>&1 &

Here is the list of all supported options:

$ rc_server -h

rc_server <options> daq_hostl daq_host2 ...
example: rc_server daq00 daqO1

options:
-h help this help text
-v verbose, multiple options accumulate
-x run without GL1/GTM support
-g hostname GL1/GTM host
-n i,j... vGTM numbers if in local mode

-f filename read hostlist from file

5 RC Commands

The r¢ commands are a subset of the well-know RCDAQ commands. Gener-
ally speaking, the commands replace “daq” with “rc”, so that the single-instance
“daq_begin” becomes “rc_begin” for Run Control. Over time we will add more
commands as needed. Here is the current list:

$ rc_client

help show this help text
rc_status [-s] [-1] display status [short] [long]
rc_open enable logging

rc_hostlist show the active hostlist

rc_begin [run-number] start taking data for run-number, or auto-increment

rc_end end the run

rc_close disable logging

rc_setrunnumberfile file define a file to maintain the current run number
rc_set_runtype type activate a predefined run type

rc_get_runtype [-1] list the active runtype (if any)
rc_set_maxevents nevt set automatic end at so many events

rc_shutdown terminate the rcdaq backend

FEach of the above commands is the exact equivalent of the corresponding rc-
daq_client commands.

6 The Run Control GUI

The Run Control GUI is a graphical interface to the rc_server. It provides a simple
and intuitive interface for the shift crew to run the DAQ.

Execute

RunControlGUI.py &

[BN [\ Run Control

Run: 32
Events: 104876

Figure 3: A screenshot of the RunControl GUI in action.

As with the GUIs of RCDAQ), this one is stateless, that is, multiple instances of the
GUI can exist, and all show the same information.

7 Restrictions and Enhancements

There are currently some restrictions that we are working on. Planned enhance-
ments include:

e a more comprehensive set of commands to bring more (albeit not all) RCDAQ
commands to RC

e it is currently not possible to adjust the participating servers dynamically.
In order to remove a server, one needs to shut down and the restart the
server without the removed server name. We will implement a more dynamic
RCDAQ instances management.

e like the server itself, the RunControl GUI has no ability to dynamically adjust
the button matrix at the bottom (see Fig. |3] when a new instance of the
rc_server restarts with a different list. We will make this dynamic as much as
possible.

	Introduction
	How to run Run Control
	Starting Run Control
	GTM Interaction
	RC Commands
	The Run Control GUI
	Restrictions and Enhancements

