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That depends on what you mean by
“Direct”....
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Photons: More Sources, More Theory
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Final-state photons are
the sum of emissions
from the entire history
of anuclear collision.



Thermal Photon Logic, ca 1985

QGP has chiral symmetry restored, quark masses ~0
-> QGP haslotso’ quarks flying around
-> QGP radiates more than HG at same temperature (false!)

-> Lotso’ thermal radiation isevidence for QGP

Ah, for the good old days....
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Why this is difficult
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Integral Limits from Conversion

CERES
HELIOS

145° S + AU

COMET \ Y .. )
s B § \\:\ 3 Limit y/(dN“/dn ) in
\ LA 0.4<p,<2.0 GeV/c

NS
AT Z. Phys C 71, 571
P e 1Y (1996)

p,O,S +Pt, W

Limit y/Tt" in 0.1<p.<1.5 GeV/c

juv detector 1 : ,//
Z. Phys C 46, 369 (1990) = L

Fig. 1. Schematic view of the CERES spectrometer



Mid-Rapicdity
Calorimeter Zero Degree

WA80 e P Spectrum Limits
from Calorimeter
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Limits on the Production of Direct Photons in 2004 GeV *28 + Au Collisions
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Thermal Photon Logic, ca 1997

QGP has chiral symmetry restored, quark masses ~0

1985

-> QGP haslots 0’ quarks flying around

-> QGP radiates more than HG at same temperature (false!)

-> Lots 0’ thermal radiation is evidence for QGP

1. Experiment: Not much radiation, only limits.

2. Theory: QGP and HG radiate similarly at same T

Final-state data does not constrain T, but rather energy density €
-> At same €, QGP has more d.o.f. than HG, higher /T4
-> At same €, QGP has lower T

-> At same €, QGP radiates less than HG

-> Lack of radiation is evidence for QGP!



Thermal Photon Rates Calculated

dR 5863 3291 ZE, € Photon radiation from

2 an equilibrated quark
]49@ 92:8 P'a”Ck 1%%2 & gluon plasma.

Rate per Cod“p“lngs Infrared Cutoff 1 (Kapusta, Lichard, Seibert
volume ?gctcfr% or Hard Thermal L PRD ‘ 91) Includes|owest-

per time effective mags  order Compton and annih.
graphs, and lowest order

A lowest-order pocket formula. (For fuller, higher- ~ HTL cutoff (Braaten &
. . Pisarski NP * 88, PRL * 89).
order version consult Gale & Haglin hep-ph/0306098)

Reasonably rigorous -- but need to integrate over space-time!

Rate from thermal hadron gas aso calculated. Version 1991,
QGP and HG rates same at same T, after much work, version
2003 isbasically the same conclusion.



Temperature Limits: Contact With
Thermodynamics At Last

PHYSICAL REVIEW C VOLUME 55, NUMBER 1 JANUARY 1997

Hydrodynamical description of 2004 GeV/c S+ Au collisions:
Hadron and electromagnetic spectra
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Combination of high energy density and low temperature is evidence
for high number of degrees of freedom -> QGP.



Thermal Photon Logic, ca 2003
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Pb+Pb: “Truly Heavy” lon Collisions

WAS98 Experimental Setup
158 A GeV Pb+Pb Collisions
at the CERN SPS
(1996)
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Yield

Real / Mixed

Real - Mixed

Why this is doubly difficult

x10°
¥ 10- 10000
158 A GeV 2%2pp +2%pp 158 A GeV 28pp +298pp 158 A GeV 2%8pp +2%pp
400 |- Peripheral a) 10000 Central a) Central a)
1.5 <pr< 1.6 GeVic 2 0.5 < py < 0.6 GeVic 2 1.0 <p; < 1.2 GeVlic
> >
5000
200 5000
0 0 0
1.005 | by
| ) 3 1o 2 32 !
= : f ot |
: = L i S pbet g T Tell LT
1 Wy vt i, } N f } i
2 i T ! s Sl u‘*"a'f”traf”“v!!ﬁﬁm'ﬁl *H‘Lll | & i s +T *+T I‘ ++ | * %T ‘ r ‘
|
0.99 0.995
c) o 0 - looo )
£ %
0 = 50000 - b=
3 3 L
" = b = - i || l*; ++.+
0 Lottt N bbb s —» Phebil by " \ | *
Rl R R B L R L e 0 Hiy WL e b bt
0" 50100 150 200 250 300 350 h;”fﬁ*g“ 00 0 S0 100 150 200 250 300 350 400 450 500 300 Tq0 500 600 mu s00 900
m,, (MeV/c") m,_ (MeVic?) m,_ (MeVic?)

Subtraction of decay photons depends critically on accurate 1 reconstr uction. In
low-multiplicity A+A collisions, similar to p+p callisions, the ° peak stands out
iImmediately (Ieft). In high-multiplicity collisions, and especially at low p;, the
extraction is extremely challenging, §B<1% (center). Also, we must measuren’sin-
situ (right); they contribute about 15% to decay photons but we cannot presume n /Tt
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A Spectrum at Last!
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Observation of Direct Photons in Central 1584 GeV 208Ph + 208ph Collisions
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WAO9S8 Interpretation |: pQCD?

pQCD (s¥?=17.3 GeV, y=0), Weng et al.
CTEQ4, <kZ>=0.9 (GeV/c)®
CTEQ4, No intrinsic k'r
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Some amount of k; required, but
still can’ t fill the whole spectrum



WAZ98 Interpretation Il: i or 77
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A New Technique: wHBT
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Direct Photons at Very Low p;
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F1G. 1: The two-photon correlation function for narrow show-
ers with Lmin > 20 cm (diamonds) and average photon mo-
menta 100 < K < 200 MeV/e (top) and 200 < Kt < 300
MeV /e (bottom) fitted with Eq. 1. The solid line shows the
fit result in the ft region used (excluding the 7" peak at
(Qinv =~ myo) and the dotted line shows the extrapolation
imto the low ine region where backgrounds are large.

Phys.Rev.Lett.93:022301,2004
also hep-ph/0403274

Credit; Dmitri Peressounko for WA98
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FIG. 4: Yield of direct photons extracted from the strength of
the two-photon correlation (closed cireles and triangles) and
by the statistical subtraction method (open arcles, or arrows
indicating upper limits) [8]. Total statistical plus systematical

errors are shown. The calculations are described in the text.



Continuum Dileptons at High Masses
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Dileptonsin the
Intermediate mass range
M,<m <M, areadso

good candidates for
thermal radiation, though
there is uncertainty on
the contribution from
associated open charm

decays.

In principle, a high-statistics measurement of intermediate-mass
dileptons vs p, could be a better measure of thermal radiation than

direct photons! But this avenue has not been thoroughly explored.



Beyond Thermal Photons

The traditional interest in therma direct
photons continues in RHIC and LHC nuclear
collisions. But photon production, aswell asW
and Z production, touches on a wide range of
physics topics beyond thermodynamics.

Jet+medium -induced direct photons

Direct photon-tagged (and Z°-tagged) jet fragmentation
Z° production and in-medium modification

W production and parton measurements
Beam-stopping bremstrahlung

Investigate the approach to thermal equilibrium



Fixed-Target Results: Conclusions

. The early days had more enthusiasm than rigor.

. In S+Au upper limits on thermal photons were used to set
limitson initial temperatures, weak evidence for high #d.o.f.

. Direct photon spectrum (ie upper and lower limits) observed
In heavier Pb+Pb collisions.

. Thermal radiation from boosted Hadron Gas may dominate
thermal radiation from cooler QGP.

. Ambiguity between pQCD sources with intrinsic plus nuclear
k. effects, and hotter thermal sources. More definitive pQCD

calculations would be a great help.

. Limiting initial temperatures in Pb+Pb possble, not yet done.



