Photon Production

PHXENIX

Hisayuki Torii, RIKEN 2005 RHIC&AGS Annual User's Meeting 2005/Jun/21

Outlines

- Introduction
 - Why photon? in p+p d+Au Au+Au
- Experiment
 - Electro Magnetic Calorimeter
- Analysis and Results
 - p+p, d+Au, and Au+Au
- Conclusion

Duarteau of Pasis, h Errardo Darrageado, Sector

Why Photon (p+p)?

- Photon in p+p is a good probe for the parton structure.
 - Leading process
 - Higher order
 - Bremsstrahlung Process
- Why RHIC?
 - RHIC provides the highest energy as p+p collisions.
 - Very unique
 - As a basic for gluon spin measurement in the future.
 - A reference for d+Au and Au+Au.

Photon in p+p is

a testing ground of pQCD

Why Photon (d+Au)?

- Nuclear Effect
 - Initial Parton Distribution
 - kT
 - (EMC effect)
 - (Shadowing, anti-shadowing)
 - (color glass condensate)
 - Final Parton Interaction
 - Multiple Scattering
 - Jet Quenching
 - \rightarrow Photon is less sensitive.

FNAL-E706 concluded kT=~1.3GeV/c in pBe collisions

Photon in d+Au is a good probe for modification of initial distribution

Why Photon (Au+Au)?

- Photon source
 - pQCD photons
 - Compton
 - Annihilation
 - Bremsstrahlung
 - Photons from jet quenching
 - Thermal photons
 - From hadron GAS
 - From QGP

Thermal photon is a good probe for QGP temperature

→ Target 1-3GeV

Realistic Calculation

PHENIX

- 3.8km with 2 rings
 - 120bunch/ring
 - 106ns crossing time
- Maximum energy
 - 250GeV for p(polarized)
 - 100GeV/nucleon for Au
- Luminosity
 - Au-Au : $2 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-2}$
 - $p-p: 2 \ge 10^{32} \text{ cm}^{-2} \text{ s}^{-2}$
- 6 Crossing points

2 central Spectrometers

2 forward Spectrometers

- 3 detectors to measure the collision point, the luminosity, and the multiplicity.
 - Beam Beam Counter(BBC)
 - Zero Degree Calorimeter(ZDC)
 - Multiplicity and Vertex Detector(MVD)

p+p

Prompt Photon Production

Prompt photon production consists of two processes

Compton/Annihilation process

In this talk, we compare our result with next-to-leading order(NLO) pQCD calculation

How to Measure?

No one know which photon from what.

Background Non-vertex Photon Neutral hadron contribution Noise in the detector Hadron(π⁰,η,ω..) decay

Estimate all backgrounds

After subtracting all backgrounds,

the remained photons are the signals.

Background from π^0

By taking all combination between the target photon and the surrounding photons, we can know the photon from pi0 decay.

 \rightarrow 70% of pi0 decay can be identified from the mass distribution

Result

Comparison with Other Experiment

x_T Scaling

- From QCD, if
 - Q²-Scaling of PDF,FF
 - No running coupling constant(α_s)

$$\sigma = \left(\sqrt{s}\right)^{-n} \times F(x_T)$$

n=constant_o $x_T = 2p_T / \sqrt{s}$

- Can be express as two terms
 - Interaction
 - Structure
- If leading order n=4
 - Next-to-leading order: $n=4+\alpha$

 x_{T} -Scaling n=~5

d+Au

Result

- The analysis method is similar to p+p
- NLO pQCD Calculation
 - p+p collisions
 - Calculated by W.Vogelsang
 - CTEQ6M
 - Scale(renormalization and factorization scale) 0.5,1.0,2.0pT
- In comparison with d+Au
 - Averaged number of collisions (8.42) from the Glauber model was multiplied to the calculation.

Result is consistent with the binary – scaled NLO-pQCD calculation

16

Result

Au+Au

Background Photons

- The main source of background is π0
- Thanks to large suppression (factor~5) of 0 yield at RHI(energy, we have an advantage to pick up the direct photon.

 π^0 suppression help to reduce photon background

Cancel Systematic Error

Direct photon yield
 = Excess from bg photons

$$R = \frac{\left(\gamma/\pi^{0}\right)_{measured}}{\left(\gamma/\pi^{0}\right)_{calculated}} = \frac{\gamma_{measured}}{\gamma_{background}}$$

- Double ratio has an advantage
 - because in the ratio of the actual point by point π^0 and inclusive γ measurements will cancel many systematics

Results

Conclusion

- p+p collisions
 - NLO pQCD calculation can describe our data
 - Sum of direct part and fragmentation part.
 - Fit in xT scaling with other experiment
- d+Au collisions
 - comparison with NLO-pQCD
 - Result in d+Au collisions is consistent with the binary-scaled NLO-pQCD calculation.
 - Nuclear Modification Factor
 - Consistent with $1 \rightarrow$ No modification within the errors
 - Prompt photon production in d+Au can be described as binary scaling
 - Result is consistent with $\pi 0$

Conclusion

- Au+Au collisions.
 - High pT photon
 - Binary Scaling and pQCD calculation
 - Consistent with 1
 - No modification within the errors
 - Support jet quenching scenario observed as pion suppression
 - No thermal photon signal yet.
 - We're analyzing the run4 Au+Au data. Plan to have the preliminary result.

Backup slide

Data Set

Run	Year	Species	s ^{1/2} [GeV]	JLdt	$\mathbf{N}_{\mathrm{tot}}$	p-p Equivalent	Data Size
01	2000	Au+Au	130	1 μb ⁻¹	10M	0.04 pb ⁻¹	3 TB
02	2001/2002	Au+Au	200	$24 \ \mu b^{-1}$	170M	1.0 pb ⁻¹	10 TB
		p+p	200	0.15 pb ⁻¹	3.7G	0.15 pb ⁻¹	20 TB
03	2002/2003	d+Au	200	2.74 nb ⁻¹	5.5G	1.1 pb ⁻¹	46 TB
		p+p	200	0.35 pb ⁻¹	6.6G	0.35 pb ⁻¹	35 TB
04	2003/2004	Au+Au Au+Au	200 62	241 μb ⁻¹ 9 μb ⁻¹	1.5G 58M	10.0 pb ⁻¹ 0.36 pb ⁻¹	270 TB 10 TB

PbSc EM Calorimeter

Sandwich type calorimeter Lead plates 55.2x55.2x1.5mmScintillator plates 110.4x110.4x4mmShish-kebab geometry wave shifter fiber readout 6x6 fibers $\rightarrow 1$ PMT = 1 tower 2 x 2 towers = 1 module 6 x 6 module = 1 super module 6 x 3 super module = 1 sector

PbSc				
5.52 x 5.52				
37.5				
15552				
~ 20%				
0.7				
90+45deg				
0.011				
0.011				
18				
~ 3cm				

PbSc sector 2.0m x 4.0m

PbGl EM Calorimeter

Lead Glass calorimeter Lead Glass 40x40x400mm used at WA98 exp. 4x6 towers = 1 super module 15*12 super module = 1 sector

	PbGI		
Size(cm x cm)	4.0 x 4.0		
Depth(cm)	40		
Number of towers	9216		
Sampling fraction	100%		
η cov.	0.7		
φ cov.	45deg		
η/mod	0.008		
¢∕mod	0.008		
X ₀	14.4		
Molière Radius	3.68cm		

PbGl sector 2.1m x 3.9m

Photon from run2 p+p

PHYSICAL REVIEW D 71, 071102 (2005)

р_т(GeV/*с*)

S/N Ratio with Isolation Cut

- S/N ratio
 - S = 直接光子
 - N = 検出できなかったπ⁰か
 らくる寄与
- Isolation cutを掛けること
 により、S/N ratioが改善。
 - Subtraction method(岡田さんトーク)と比較して約5倍。
 - 将来予定している直接光 子を用いた陽子中グルー オン偏極量の測定に有効。
- 測定レンジ
 p_T = 5-17GeV/c

Direct Photons at the SPS

Background from π^0

- Identified π 0 decay(~70%)
 - Check measured $\pi 0$
 - Peak position and width is consistent with the expectation
 - Energy asymmetry is consistent with the expectation
 - All channels of EMCal are working.
 - We confirmed all channels are working properly.
 - No-Position dependence
 - Systematic uncertainty due to the combinatorial bg.
- Un-identified $\pi 0$ (~30%)
 - Corrected by a Monte Carlo simulation
 - The main loss is due to the geometrical acceptance.
 - Systematic error on the Monte Carlo
 - Was estimated from the possible miss-tuned parameters in MC.
- Other Hadron
 - PHENIX measured η
 - $-~\omega$ and other hadron was estimated by assuming m_T scaling
- Other souce
 - Neutral/charged hadron and non-vertex photon was estimated by the GEANT simulation and data itself.

モンテカルロ自体は過去のテスト実験 等で測定してきたEMCalの性能を再 現するように調整済み。

バックグランド同定

- 同定できたπ⁰粒子からの光子
 - π^0 質量分布
 - ・ピーク位置や幅が正しく再現する。
 - π⁰のenergy asymmetryが正しく再現する。
 - すべてのEMCalのチャンネルが正しく動作。
 - 一つもπ⁰を見落としていないことを確認。
 - 場所依存性が無い。
 - Combinatorialの見積もりから来る系統誤差3%。
- 「同定できなかったπ⁰粒子からの光子
 - モンテカルロ計算で補正
 - おもに、検出器間の隙間によって起こる
 - モンテカルロ計算の系統誤差
 - 系統誤差はあらゆる可能性を考慮して誤差を評価。
- 他のハドロン崩壊からの光子
 - PHENIXにおける<u>n 粒子の測定結果</u>ならびに m_Tスケーリング則を仮定して、ω等を見積もる。
- その他もろもろ
 - 中性・荷電ハドロン、衝突以外からの光子等はデータ自身 ならびにGeantモンテカルロを用いて見積もる。

Isolation Cutの効率

- なにが原因で効率/非効率を生み出すのか?
 - イベント構造によるもの
 - fragmentation photon は近くにジェットを伴うため効率は低いと予想される。
 - PHENIX検出器のアクセプタンスは完全ではない。
 - Underlying eventによるもの。
- Isolation cut による検出効率をMonte Carlo計算により見積もる。
 モデル依存の計算である。
 - PYTHIA simulationによる見積もり。
 - Signal(direct photon) : >90% for pT>5GeV/c
 - Signal(fragmentation photon)に関しては研究を進めている最中である。
 T.Horaguchi and K.Nakano are working for these items.
- この発表ではisolation cutによる効率の補正なしで、isolation methodで得られた結果をsubtraction method (前の岡田さん発表)の結果と比較してみる。
 - この比較により、direct/fragmentation photonの成分を分けることができないだろうか、ということを念頭に。

Event Selection and Analysis

- Event Selection
 - データはRHIC-run3 p+p データ (2003/Apr May)
 - 陽子ビームは longitudinally polarized at PHENIX. 偏極平均での測定。
 - 今回解析したデータは、ERTトリガー(Eγ>1.5GeV/c)にて取得。
 - 266pb⁻¹相当。
- Analysis procedure
 - 光子の選択
 - EM shower is photon-like
 - No charge hit on chambers in front of EMCal.
 - Isolation cut.
 - π⁰からくる(上の選択を通り抜けた)光子の寄与はデータ自身から見積もる。
 - ただし、検出器にて検出できなかったπ⁰からくる寄与ならびに他のハドロン (ω、η 他)からくる寄与は
 - 過去の実験からの推定
 - 我々PHENIXでの測定(π^0 , η)
 - モンテカルロ計算
- $E\frac{\dot{d}^{3}\sigma}{dp^{3}} = \frac{1}{L} \times \frac{1}{2\pi p_{T}} \times \frac{N_{photon}}{\varepsilon_{eff} \times \varepsilon_{acc} \times \varepsilon_{triggerbias}}$ Cross section calculation

photon/ π^0 ratio

Plot (1)

PHENIX Preliminary

Vertical bin shift correction has been applied (3-4%)

Eta/pi0 ratio

all ratios of eta/pi 0 pAl 200GeV fnal629 pC 200GeV fnal629 piC_200GeV_fnal629 ppbar 540GeV UA2 pp_62.4GeV_kourkoumelis pp_530GeV_fnal706 pp 800GeV fnal706 Antille87 pp 24.3GeV ratio.txt Antille87_ppbar_24.3GeV_ratio.txt donaldson78 piminusp 100GeV ratio.txt donaldson78 piminusp 200GeV ratio.txt donaldson78_piplusp_100GeV_ratio.txt donaldson78 piplusp 200GeV ratio.txt donaldson78 pp 200GeV ratio.txt donaldson78 pp 100GeV ratio.txt WA80 SAu 200GeV ratio.txt WA80 SS 200GeV ratio.txt pBe_530GeV_fnal706_ratio.txt pBe 800GeV fnal706 ratio.txt phenix_pp_200GeV_ratio.txt

Results

