Experime	ental Setup	Introduction	Motivation	Results	Summary
	Identified (harged Hadr	on Spectra ar	nd Ratios in	

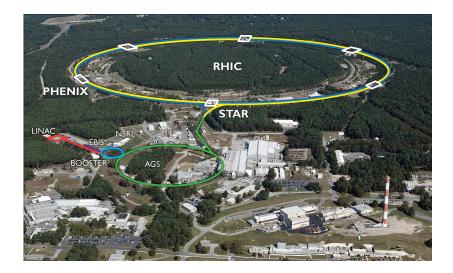
Au+Au and d+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Ron Belmont Wayne State University

NAP Seminar February 21st, 2014

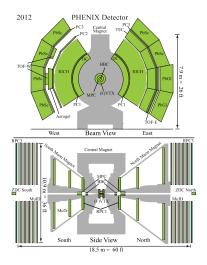
Experimental Setup	Introduction	Motivation	Results	
Outline				

- Experimental Setup
- Introduction
- Motivation
- Results
- A brief look elsewhere
- Summary

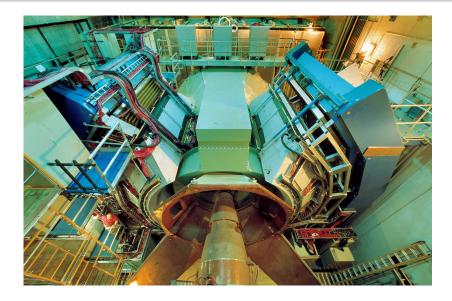

Experimental Setup	Introduction	Motivation	Results	
The Relativistic	: Heavy Ic	on Collider		

- RHIC is the only polarized proton collider in the world
- RHIC is one of two heavy ion colliders, the other being the LHC
- RHIC is a dedicated ion collider and is designed to collide many different species of ions at many different energies

Collision Species	Collision Energies (GeV)
p↑+p↑	62.4, 200, 500, 510
d+Au	200
Cu+Cu	22.5, 62.4, 200
Cu+Au	200
Au+Au	5.0, 7.7, 11.5, 19.6, 27.0, 39.0, 56.0, 62.4, 130, 200
U+U	193


- Two small experiments, PHOBOS and BRAHMS (decommissioned in 2005)
- Two large experiments, PHENIX and STAR (currently active)

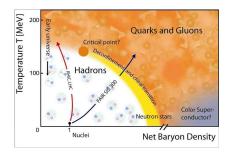
Experimental Setup	Introduction	Motivation	Results	
RHIC Complex				


Experimental Setup	Introduction	Motivation	Results	
PHENIX				

- Weighs approximately 3000 tons
- Three separate magnet systems (Central Arms and Muon North and South) weighing 1700 tons alone
- 16 detector subsystems and 300,000 electronics channels
- 30 feet tall, 40 feet wide, 60 feet long
- Fast DAQ system—up to 10 kHz, 1 GB/s
- Ideally suited for measurements of rare probes, electrons, muons, high *p*_T photons, etc.

Experimental Setup	Introduction	Motivation	Results	

PHENIX



Experimental Setup	Introduction	Motivation	Results	
The quark-g	luon plasma			

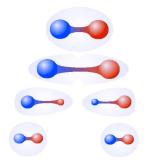
At sufficiently high temperature and/or density, the gauge coupling between quarks and gluons becomes sufficiently weak that deconfinement is achieved

Some basic information about the QGP created at RHIC:

- Particles produced in thermal abundances
- Hydrodynamics models describe the data very well, require fast thermalization at the parton level
- The matter is very hot! Measured by PHENIX to be 300–600 MeV $(3-6 \times 10^{12} \text{ K})$, well in excess of $T_c \approx 175 \text{ MeV}$
- Compare to stellar coronae (10⁶ K), core of white dwarf (10⁷ K)

Experimental Setup	Introduction	Motivation	Results	
Centrality				

- Since you can't measure impact parameter, *N_{participants}*, or *N_{collisions}* find something you can measure
- Event multiplicity, charge sum forward detectors, etc.
- Use geometrical (Glauber model) simulations to determine N_{part} and N_{coll} from detector response


Centrality	$\langle N_{coll} \rangle$	(N _{part})
Au+Au		
0-10%	960.2 ± 96.1	325.8 ± 3.8
10-20%	609.5 ± 59.8	236.1 ± 5.5
20-40%	300.8 ± 29.6	141.5 ± 5.8
40-60%	94.2 ± 12.0	61.6 ± 5.1
60-92%	14.8 ± 3.0	14.7 ± 2.9
d+Au		
0-20%	15.1 ± 1.0	15.3 ± 0.8
20-40%	10.2 ± 0.7	11.1 ± 0.6
0-100%	7.6 ± 0.4	8.5 ± 0.4
40-60%	6.6 ± 0.4	7.8 ± 0.4
60-88%	3.1 ± 0.2	4.3 ± 0.2
p+p	$\equiv 1$	$\equiv 2$

Experimental Setup Introduction Motivation Results Summary
Particle production by fragmentation

 Pair creation through stretching and breaking of gluon flux tubes

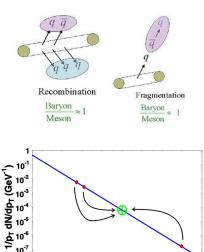
$$V(r) = -C_F \frac{\alpha_s}{r} + kr$$

• Fragmentation function $D_{c \rightarrow h}(z)$ —probability that parton cfragments into hadron h with fraction z of the parton momentum

$$E \frac{d^3 N_h}{dP^3} = \sum_{abcd} \iiint dz dx_a dx_b f_a(x_a) f_b(x_b) \frac{d\sigma}{dt} (ab \to cd) D_{c \to h}(z)/z$$
$$E \frac{d^3 N_h}{dP^3} = \int d\Sigma \frac{P \cdot u}{(2\pi)^3} \sum_c \int dz \ z^{-3} w_c(P/z) \ D_{c \to h}(z)$$

 Experimental Setup
 Introduction
 Motivation
 Results
 Summary

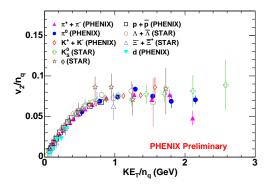
 Particle production by recombination
 Summary


- Partons close together in phase space can coalesce into bound states
- Originally introduced to explain particle production in the far forward region in p+p collisions
- The QGP is a system of thermalized partons, so the phase space is large and this is a natural way of thinking about hadronization
- Each parton has a fraction x of the total momentum of the produced hadron

$$E\frac{d^{3}N^{(\text{Messon})}}{dP^{3}} = \int d\Sigma \frac{P \cdot u}{(2\pi)^{3}} \sum_{\alpha\beta} \int dx \ w_{\alpha}(xP)\bar{w}_{\beta}((1-x)P) \ |\phi_{\alpha\beta}^{(M)}(x)|^{2}$$
$$E\frac{d^{3}N^{(Baryon)}}{dP^{3}} = \int d\Sigma \frac{P \cdot u}{(2\pi)^{3}} \sum_{\alpha\beta\gamma} \iint dxdx' \ w_{\alpha}(xP)w_{\beta}(x'P)w_{\gamma}((1-x-x')P) \ |\phi_{\alpha\beta\gamma}^{(B)}(x,x')|^{2}$$

Experimental Setup	Introduction	Motivation	Results	
Fragmentatio	on and recom	bination		

- *P*—hadron momentum *p*—parton momentum
- P
 P = zp and P > p for recombination
 because xP = p
- To make a 6 GeV/c hadron by fragmentation, need one parton with >6 GeV/c
- To make a 6 GeV/c meson by recombination, need two partons with \approx 3 GeV/c
- To make a 6 GeV/c baryon by recombination, need three partons with $\approx 2 \text{ GeV/c}$



p_T (GeV)

10

10⁻⁷ 10⁻⁸ 2 3

In recombination model, estimate of hadron v_2 is $v_2^{(M)}(P) = v_2^q(xP) + v_2^q((1-x)P), \quad v_2^{(B)}(P) = v_2^q(xP) + v_2^q(x'P) + v_2^q((1-x-x')P)$ Assuming all the hadron momentum is carried by the valence quarks, and that it is equally divided among them (x = 1/2 for mesons, x = 1/3 for baryons) $v_2^{(M)}(P) = 2v_2^q(P/2), \quad v_2^{(B)}(P) = 3v_2^q(P/3)$ hence quark number scaling

Experimental Setup	Introduction	Motivation	Results	

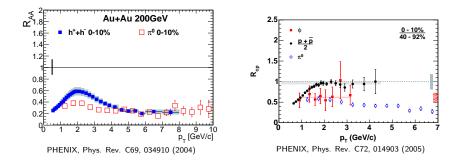
Утро в сосновом лесу

Ex	D	€r	m	er	ıtal	Setu	n

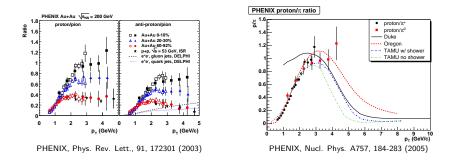
Introduction

Motivation

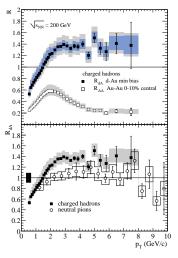
Results


Summary

Утро в сосновом лесу

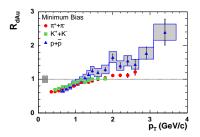

Baryon vs. meson production

- R_{AA} of unidentified hadrons and π^0 shows factor of 5(!) suppression
- *R_{CP}* shows no suppression of baryons?
- Heavy meson φ has similar mass to proton (1.019 GeV/c² cf 0.938 GeV/c²) but similar suppression to pion—not a mass effect


Baryon vs. meson production

- Baryon production significantly enhanced relative to meson production ۰
- Hadronization by string fragmentation yields similar baryon/meson ratios in p+p and Au+Au
- Hadronization by parton recombination may explain this enhancement (also explains quark number scaling found in elliptic flow data)

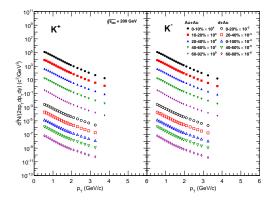
Experimental Setup Introduction Motivation Results Summary


- In addition to effects from the QGP, there are initial state effects caused by the cold nuclear matter
- Some models proposed particle suppression at RHIC could be from initial state effects, but the data show Cronin enhancement
- Cronin enhancement: enhancement of particle yield at intermediate p_T in p+A collisions relative to p+p
- Unidentified hadrons show greater enhancement than neutral pions...

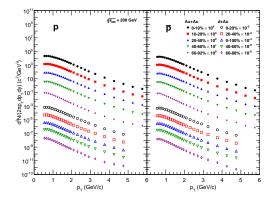
PHENIX, Phys. Rev. Lett. 91, 072303 (2003)

Experimental Setup Introduction Motivation Results Summary

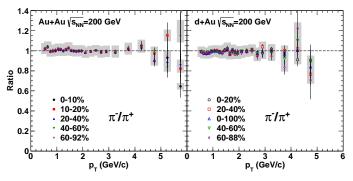
- Strong particle species dependence for Cronin enhancement
- Most models of the Cronin enhancement rely on initial state effects like multiple parton rescatterings—no particle species dependence
- Recombination model applied to d+Au uses final state effect in cold nuclear matter, greater Cronin enhancement for baryons than for mesons—discussed in Phys. Rev. Lett. 93, 082302 (2004) by R.C. Hwa and C.B. Yang
- Soft partons at low x can take place of thermal partons in hot nuclear matter, so recombination may make sense here


PHENIX, Phys. Rev. C91, 024904 (2006)

Experimental Setup	Introduction	Motivation	Results	
Pion spectra				

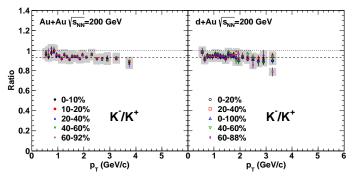

- New PHENIX results, Phys. Rev. C88, 024906 (2013)
- Au+Au up to 6 GeV/c and d+Au up to 5 GeV/c

Experimental Setup	Introduction	Motivation	Results	
Kaon spectra				


- New PHENIX results, Phys. Rev. C88, 024906 (2013)
- Au+Au up to 4 GeV/c and d+Au up to 3.5 GeV/c

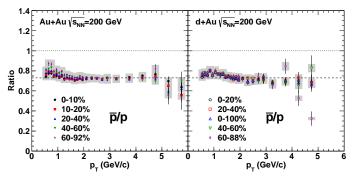
Experimental Setup	Introduction	Motivation	Results	
Proton spectra				

- New PHENIX results, Phys. Rev. C88, 024906 (2013)
- Au+Au up to 6 GeV/c and d+Au up to 5 GeV/c

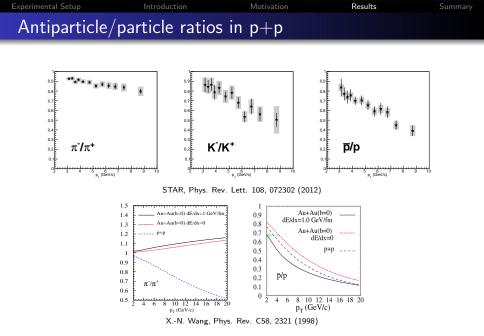

Experimental Setup	Introduction	Motivation	Results	
Ratio π^-/π^+				

PHENIX, Phys. Rev. C88, 024906 (2013)

- π^-/π^+ ratio is independent of p_T , centrality, and collision system
- Ratio is essentially equal to unity


Experimental Setup	Introduction	Motivation	Results	
Ratio K^-/K^+				

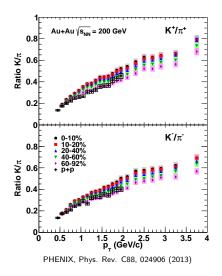
PHENIX, Phys. Rev. C88, 024906 (2013)


- K^-/K^+ ratio is independent of p_T , centrality, and collision system
- Ratio is slightly less than unity (0.93)

Experimental Setup	Introduction	Motivation	Results	
Ratio \bar{p}/p				

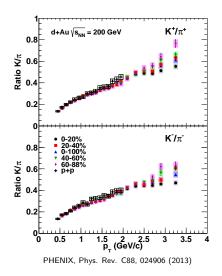
PHENIX, Phys. Rev. C88, 024906 (2013)

- \bar{p}/p ratio is independent of p_T , centrality, and collision system
- Ratio is roughly 0.73

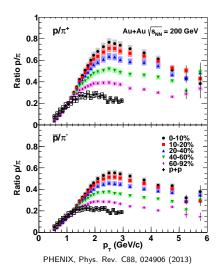


 Experimental Setup
 Introduction
 Motivation
 Results
 Summary

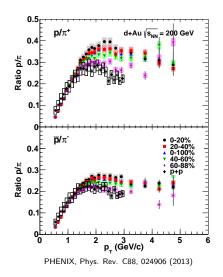
 What did we learn from antiparticle/particle ratios?


- The most boring result ever? Minimal dependence on p_T, centrality, and collision species...
- But the result is different in p+p collisions!
- The heuristic argument in p+p is basically isospin conservation—high p_T produced particles should have at least once valence quark from the initial state
- This favors production of $\pi^+(u\bar{a})$, $K^+(u\bar{s})$, and p(uud), so all the ratios decrease with increasing p_T
- The $\pi^{-}(\bar{u}d)$ also has a valence quark in common with the initial reactants, while $K^{-}(\bar{u}s)$ and $\bar{p}(\bar{u}\bar{u}d)$ do not—thus the π^{-}/π^{+} ratio falls off more slowly
- Something similar may happen in d+Au and Au+Au, but if so the p_T regime is higher than in p+p

Experimental Setup Introduction Motivation Results Summary Ratio K/π in Au+Au


- No difference between charges
 (K⁻/K⁺ and π⁻/π⁺ are flat)
- Ratios rise steadily over the whole available p_T range, although expected to turn over and decrease at some point
- Overall level rises with centrality—indicative of strangeness enhancement
- Ratios rise more quickly in Au+Au than in p+p up to about 2 GeV/c—may give insight into strangeness production mechanism

Experimental Setup Introduction Motivation Results Summary Ratio K/π in d+Au

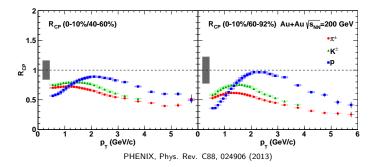

- No difference between charges (K⁻/K⁺ and π⁻/π⁺ are flat)
- As with Au+Au, ratios rise steadily over the whole available p_T range
- No centrality dependence and no difference from ratio in p+p
- d+Au seems to be missing the additional strangeness production mechanism present in Au+Au

Experimental Setup Introduction Motivation Results Summary Ratio p/π in Au+Au

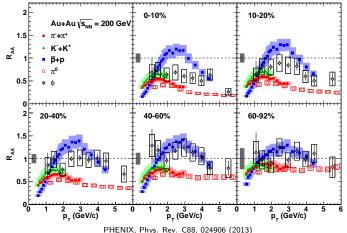


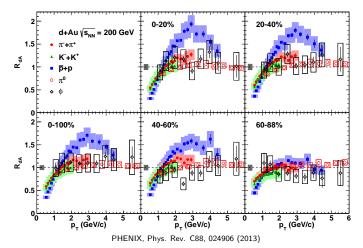
- Identical centrality dependence and p_T shapes (p̄/p and π⁻/π⁺ are flat)
- Attempts to explain baryon enhancement as due to strong flow cannot reproduce the strong centrality dependence
- Ratio rises quickly, reaches maximum at about 2.5 GeV/c in the most central collisions, then falls off slowly—the maximum appears to shift to lower p_T as the collisions become more peripheral

Experimental Setup Introduction Motivation Results Summary Ratio p/π in d+Au

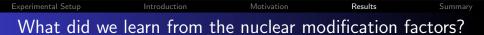


- Identical centrality dependence and p_T shapes $(\bar{p}/p \text{ and } \pi^-/\pi^+ \text{ are flat})$
- Ratio rises quickly, reaches maximum at about 2.0 GeV/c, then falls off slowly
- Strong centrality dependence (consider small range of N_{part} and N_{coll} values)—what causes this?


- Centrality dependence of K/π in Au+Au is consistent with strangeness enhancement
 - The detailed *p*_T dependence may shed light on the strangeness production mechanism
 - The K/π ratio in d+Au is centrality independent and consistent with the ratio in p+p, in contrast to Au+Au
- The p/π ratio exhibits strong centrality dependence in both Au+Au and d+Au
 - The enhancement of p/π in Au+Au and d+Au relative to p+p cannot be attributed to flow alone
 - The centrality dependence of p/π in Au+Au is straightforward to understand based on the system size, what about d+Au?


- All particles show a "bump", a rise then a fall—the proton bump is larger and at a higher p_T than that of the mesons
- The kaon bump is higher than the pion but in the same place; the enhancement relative to the pion is decreased for 0–10%/40-60% relative to 0–10%/60–92%

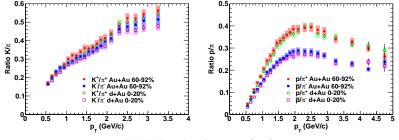
Experimental Setup Introduction Motivation Results Summa Nuclear modification factor R_{AA} for different centralities


- The kaon and pion are most separated in the most central
- ${\ensuremath{\bullet}}$ The ϕ seems to stay in between the kaon and the proton
- The proton shows little or no centrality dependence

Experimental Setup Introduction Motivation Results Summa Nuclear modification factor R_{dA} for different centralities

• The charged pions and kaons are consistent with each other

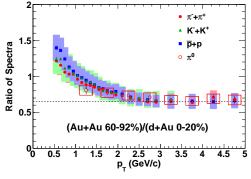
- The ϕ meson exhibits minimal modification to higher p_T like the π^0
- All four mesons consistent while protons strikingly different with strong centrality dependence


- Two main things to consider—strangeness and baryon production
- The additional strangeness production mechanism present in Au+Au is absent in d+Au
 - Kaon R_{AA} is above pion R_{AA} and the difference varies with centrality, and the ϕR_{AA} is in between kaons and protons
 - The R_{dA} of pions, kaons, and ϕ are all consistent with each other
 - The K/π ratios tell a similar story
- Both Au+Au and d+Au have significant baryon enhancement
 - The enhancement in d+Au has no dependence on mass or strangeness, but strong dependence on type (baryon vs meson)
 - The enhancement in both systems is strongly centrality dependent, as seen in the p/π ratios as well as the R_{dA}

Experimental Setup	Introduction	Motivation	Results	
Peripheral A	u+Au and cer	htral d+Au		

Centrality	$\langle N_{coll} \rangle$	$\langle N_{part} \rangle$
Au+Au		
60-92%	$\textbf{14.8} \pm \textbf{3.0}$	$\textbf{14.7}\pm\textbf{2.9}$
d+Au		
0-20%	$\textbf{15.1} \pm \textbf{1.0}$	$\textbf{15.3} \pm \textbf{0.8}$

- Peripheral Au+Au and central d+Au have the same N_{coll}
- Peripheral Au+Au and central d+Au have the same N_{part}
- The N_{coll} ratio is 1.02 \pm 0.22, the N_{part} ratio is 1.04 \pm 0.21
- As an added bonus, all 4 of these numbers are consistent within uncertainties

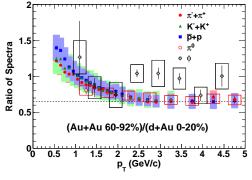


PHENIX, Phys. Rev. C88, 024906 (2013)

Both height and shape are identical for peripheral Au+Au and central d+Au

 Experimental Setup
 Introduction
 Motivation
 Results
 Summary

 Ratio of yields in peripheral Au+Au to central d+Au



PHENIX, Phys. Rev. C88, 024906 (2013)

- No scaling applied, *N_{coll}* and *N_{part}* have very similar values
- Flat in p_T above 2.5–3.0 GeV/c with no species dependence
- Upward trend at low p_T with possible mass ordering
- Which physics effects cancel out and which ones are at play? Rapidity shift? Cronin? Flow? Baryon enhancement? nPDFs?

 Experimental Setup
 Introduction
 Motivation
 Results
 Summary

 Ratio of yields in peripheral Au+Au to central d+Au

PHENIX, Phys. Rev. C88, 024906 (2013)

- No scaling applied, *N_{coll}* and *N_{part}* have very similar values
- Flat in p_T above 2.5–3.0 GeV/c with no species dependence
- Upward trend at low p_T with possible mass ordering
- Which physics effects cancel out and which ones are at play? Rapidity shift? Cronin? Flow? Baryon enhancement? nPDFs?

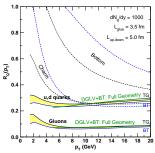
 Experimental Setup
 Introduction
 Motivation
 Results
 Summary

 What did we learn from this comparison?
 Summary

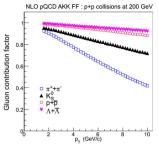
- Identical K/π and p/π ratios suggest common mechanisms for strangeness and baryon production in the two systems
- Direct ratio of spectra is flat and independent of species above 2.5 GeV/c
 - Baryon enhancement is quantitatively the same—this is further evidence that the mechanism is the same in both systems
 - Ratio is significantly less than unity—suggests energy loss for all species in peripheral Au+Au
 - The ϕ data don't have enough precision for this measurement, but the kaons seem to suggest that any possible strangeness effects also cancel
- Remarkable similarities between peripheral Au+Au and central d+Au suggest other asymmetric collision species could reveal some very interesting physics
 - Should see rapidity shift
 - nPDFs will be different
 - Strangeness effects may come into play
 - Cu+Au in Run12! ³He+Au planned for Run15! How about Si+Au?

Experimental Setup	Introduction	Motivation	Results	
Summary of	Results			

- Strangeness enhancement in Au+Au but not in d+Au
 - R_{AA} of phi is above kaon, which is above pion
 - K/π ratio in Au+Au show centrality dependent enhancement
 - R_{dA} of strange and non-strange mesons consistent with each other
 - K/π ratio in d+Au has no centrality dependence and is consistent with p+p
- Baryon enhancement in both Au+Au and d+Au
 - p/π ratios have strong centrality dependence in both systems
 - R_{dA} of protons has strong centrality dependence
- Striking similarities between peripheral Au+Au and central d+Au
 - Identical K/π and p/π ratios
 - Direct ratio of spectra is independent of particle species
- Further theoretical investigation and comparison to these precision data is warranted! Viscous hydro, recombination, baryon junctions, color field effects, etc...

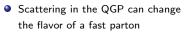

 Experimental Setup
 Introduction
 Motivation
 Results
 Summary

 A brief look elsewhere


 </

Let's have a brief look elsewhere...

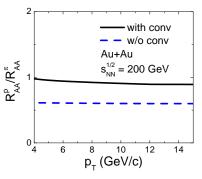
S. Wicks et al, Nucl. Phys. A784, 426-442 (2007)



S. Albino et al, Phys. Rev. D75, 184-283 (2007)

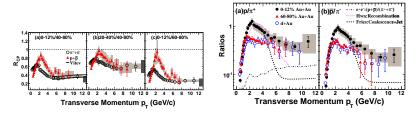
- Gluons expected to lose more energy in the quark-gluon plasma by gluon radiation: $C_A = 3$, $C_F = 4/3$, $C_A/C_F = 9/4$
- Gluon contribution factor to fragmentation is larger for protons than for pions
- Measurements of pion and proton nuclear modification factors may help us study flavor dependence of energy loss

 Experimental Setup
 Introduction
 Motivation
 Results
 Summary

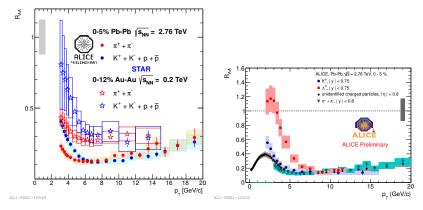

 Physics motivation: flavor conversions
 Flav

Annihilation

$$q + ar{q} \leftrightarrow g + g$$


- Compton scattering $q + g \leftrightarrow g + q$
- Differences between energy loss may be mitigated

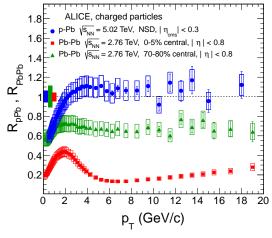
W. Liu and R. Fries, Phys. Rev. C77, 054902 (2008)


Our good friends in STAR

STAR, Phys. Rev. Lett. 97, 152301 (2006)

- STAR sees R_{CP} and p/π with very similar trends as we do
- *R_{CP}* of proton comes down and gets very close to pion, consistent within (large) uncertainties at highest *p_T*
- p/π rises quickly, falls off much more slowly than model predictions

		metrution	Results	Caninary
Experimental Setup	Introduction	Motivation	Results	Summary



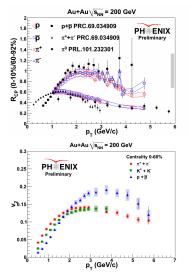
- ALICE shows very similar suppression for π and (K + p) like STAR
- ALICE shows very similar suppression for Λ and K_S^0

 Experimental Setup
 Introduction
 Motivation
 Results
 Summary

 A new era at the LHC
 Introduction
 Introducti

Cronin enhancement at 2.76 TeV?

ALICE, arXiv:1210.4520


Experimental Setup	Introduction	Motivation	Results	Summary
Summary				

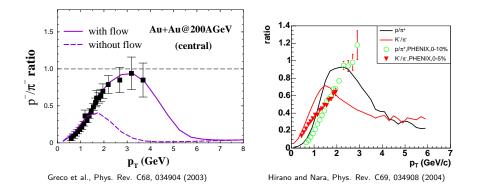
- Flavor dynamics could be a very interesting probe of the medium
- Flavor conversions via 2↔2 scattering are an important ingredient in understanding these dynamics, so are the fragmentation functions
- Recombination effects are clearly important to much higher p_T than what is sometimes considered, so where "high p_T" really begins is a serious question
- There are theoretical and experimental challenges, but the ALICE results look promising, and our theory friends are always improving their techniques
- The remarkable similarities between central d+Au and peripheral Au+Au suggest a common particle production mechanism
- This is bolstered by the evidence that the observed baryon enhancement in Au+Au and d+Au appear to be driven by the same mechanism
- Further theoretical investigation is warranted!
- Asymmetric collisions are very interesting! There are proposals for a p+X(Au,Cu,Si,C) run, how about an X+Au run?

Experimental Setup	Introduction	Motivation	Results	
Extra Material				

Extra Material

Experimental Setup	Introduction	Motivation	Results	
R_{CP} and v_2				

R. Belmont, Nucl. Phys. A830, 697c-700c (2009)


Relative change for protons to pions

	R _{CP}	<i>V</i> ₂
reco	1	\uparrow
eloss	\rightarrow	\uparrow

- Recombination dominates for *p_T* up to ≈ 4 GeV/c
- Fragmentation or something like it takes over at higher p_T
- At high p_T, proton R_{CP} and v₂ approach pion
- Need PID R_{AA} (or R_{CP}) and v₂ to higher p_T

Experimental Setup	Introduction	Motivation	Results	
	the track of the set			

Radial flow is important

- Radial flow is important
- Hadron spectra and ratios reflect the interplay of many important and disparate phenomena