Searching for the smallest droplets of the early universe: heavy-ion physics with small systems

> Ron Belmont University of North Carolina Greensboro

> > Physics Department Seminar Urbana-Champaign, IL 15 February 2021

Утро в сосновом лесу

R. Belmont, UNCG

Утро в сосновом лесу

Historical Perspective

"Those who do not remember George Santayana are condemned to paraphrase him." - Unknown

- 400 BCE Democritus hypothesizes atoms
- 1687 Newton publishes Philosophiae Naturalis Principia Mathematica
- 1900 Planck's Law
- 1905 Einstein's 4 papers
- 1911 Rutherford scattering
- 1913 Bohr atom
- 1924 de Broglie wavelength
- 1925 Heisenberg's Matrix mechanics
- 1926 Schrödinger equation
- 1927 Dirac's relativistic quantum mechanics

"Those who do not remember George Santayana are condemned to paraphrase him." - Unknown

- 1963 Gell-Mann's Quark Model (particle zoo)
- 1965 Additional degree of freedom postulated for quarks by Han and Nambu
- 1969 Deep inelastic scattering experiments prove the existence of quarks
- 1972 Color charge and basic framework of quantum chromodynamics
- 1973 Asymptotic Freedom discovered by Gross, Politzer, and Wilczek
- 1975 Collins and Perry formulate a QCD plasma
- 1980 Shuryak coins term quark-gluon plasma (QGP)
- 2000 RHIC is operational
- 2010 First heavy ion collisions at LHC

The history of the universe

- The early universe (few microseconds) was a quark-gluon plasma (QGP)
- The QGP is a system of deconfined quarks and gluons
- We can recreate the QGP in the lab in collisions of heavy nuclei at relativistic speeds
- Goal of heavy-ion physics: create, identify, and study the QGP

Phases of QCD matter

- F. Karsch, Lect. Notes Phys. 583, 209-249 (2002)
 - Lattice QCD predicts a phase transition from nuclear matter to QGP
 - \bullet Large increase energy density at $T_C\approx 155$ MeV due to large increase in number of degrees of freedom

$$arepsilon_{SB}=grac{\pi^2}{30}T^4$$

- Below T_C: g = 3
 3 pions with spin 0
- Above T_C: g = 37
 8 gluons with spin 1,
 2 (anti)quarks with spin 1/2

Phases of QCD matter

F. Karsch, Lect. Notes Phys. 583, 209-249 (2002)

- The confining part of gets weaker with increasing temperature
- $\bullet\,$ More or less gone at the critical temperature ($T_C\approx 155\,\,\text{MeV})$

The Relativistic Heavy Ion Collider

R. Belmont, UNCG

UIUC seminar, 15 February 2021 - Slide 8

The Relativistic Heavy Ion Collider

- RHIC is the only polarized proton collider in the world
- RHIC is one of two heavy ion colliders, the other being the LHC

Collision Species	Collision Energies (GeV)
$p\uparrow + p\uparrow$	510, 500, 200, 62.4
p+Al	200
p+Au	200
d+Au	200, 62.4, 39, 19.6
³ He+Au	200
Cu+Cu	200, 62.4, 22.5
Cu+Au	200
Ru+Ru	200
Zr+Zr	200
Au+Au	200, 130, 62.4, 56, 39, 27, 19.6, 15, 11.5, 7.7, 5,
U+U	193

And more to come!

Centrality

- b (impact parameter)—separation between the centers of the two nuclei
- N_{part} —number of nucleons in the overlap region
- N_{coll}—number of nucleon-nucleon collisions

		Centrality	$\langle N_{coll} \rangle$	$\langle N_{part} \rangle$
		Au+Au		
Peripheral	Central	0-10%	960.2	325.8
		10-20%	609.5	236.1
		20-40%	300.8	141.5
		40-60%	94.2	61.6
		60-92%	14.8	14.7
		d+Au		
l liabaa b	l avvan h	0-20%	15.1	15.3
Higner b	Lower b Higher Npart Higher Ncoll	20-40%	10.2	11.1
Lower Npart		0-100%	7.6	8.5
Lower NCOII		40-60%	6.6	7.8
		60-88%	3.1	4.3
		p+p	$\equiv 1$	≡ 2

(- -)

. . .

Centrality

- b (impact parameter)—separation between the centers of the two nuclei
- N_{part}—number of nucleons in the overlap region
- N_{coll}—number of nucleon-nucleon collisions

Centrality	$\langle N_{coll} \rangle$	$\langle N_{part} \rangle$
Au+Au		
0-10%	960.2	325.8
10-20%	609.5	236.1
20-40%	300.8	141.5
40-60%	94.2	61.6
60-92%	14.8	14.7
d+Au		
0-20%	15.1	15.3
20-40%	10.2	11.1
0-100%	7.6	8.5
40-60%	6.6	7.8
60-88%	3.1	4.3
p+p	$\equiv 1$	≡ 2

Azimuthal anisotropy measurements

• Hydrodynamics translates initial shape (including fluctuations) into final state distribution • $\varphi = \phi_{lab} - \psi_{RP}$

Azimuthal anisotropy measurements

• Hydrodynamics translates initial shape (including fluctuations) into final state distribution • $\varphi = \phi_{lab} - \psi_{RP}$

PHOBOS Plenary, Quark Matter 2005 (see also Phys.Rev.C 77, 014906 (2008))

Participant Eccentricity

Nucleus 2

A nucleus isn't just a sphere

PHOBOS Plenary, Quark Matter 2005 (see also Phys.Rev.C 77, 014906 (2008))

A nucleus isn't just a sphere

PHOBOS Plenary, Quark Matter 2005 (see also Phys.Rev.C 77, 014906 (2008))

A nucleus isn't just a sphere

R. Andrade et al, Eur. Phys. J. A 29, 23-26 (2006)

NeXSPheRIO results on elliptic flow at RHIC and connection with thermalization

 $\rm R.Andrade^1, \, \underline{F.Grassi}^1, \, Y.Hama^1, \, T.Kodama^2, \, O.Socolowski \, Jr.^3, \, and \, B.Tavares^2$

¹ Instituto de Física, USP,
 C. P. 66318, 05315-970 São Paulo-SP, Brazil

² Instituto de Física, UFRJ,

C. P. 68528, 21945-970 Rio de Janeiro-RJ , Brazil

 3 CTA/ITA,

Praça Marechal Eduardo Gomes 50, CEP 12228-900 São José dos Campos-SP, Brazil

Received 1 January 2004

Worth noting that lumpy initial conditions were predicted some time in 2003

Data and theory for v_n

Gale et al, Phys. Rev. Lett. 110, 012302 (2013)

Fluctuations in large systems

PHOBOS, Phys. Rev. C 81, 034915 (2010)

Fluctuations should also be translated, so measure $\sigma_{v_2}/\langle v_2 \rangle$

 $|\eta| < 1$

Generally good agreement with models of initial geometry

Fluctuations in large systems

PHENIX (RB), Phys. Rev. C 99, 024903 (2019)

Fluctuations should also be translated, so measure $\sigma_{v_2}/\langle v_2 \rangle$

 $1 < |\eta| < 3$

Generally good agreement with models of initial geometry

Fluctuations in large systems

PHENIX (RB), Phys. Rev. C 99, 024903 (2019)

Fluctuations should also be translated, so measure $\sigma_{v_2}/\langle v_2 \rangle$

 $1 < |\eta| < 3$

Central: breakdown of small-variance limit

Peripheral: non-linearity in hydro response (e.g. J. Noronha-Hostler et al Phys. Rev. C 93, 014909 (2016)) Small systems

A brief history of heavy ion physics

- 1980s and 1990s—AGS and SPS... QGP at SPS!
- Early 2000s—QGP at RHIC! No QGP at SPS. d+Au as control.
- Mid-late 2000s—Detailed, quantitative studies of strongly coupled QGP. d+Au as control.
- 2010—Ridge in high multiplicity p+p (LHC)! Probably CGC!
- Early 2010s—QGP in p+Pb!
- Early 2010s—QGP in d+Au!
- Mid 2010s and now-ish—QGP in high multiplicity p+p? QGP in mid-multiplicity p+p?? QGP in d+Au even at low energies???

A brief history of heavy ion physics

- 1980s and 1990s—AGS and SPS... QGP at SPS!
- Early 2000s—QGP at RHIC! No QGP at SPS. d+Au as control.
- Mid-late 2000s—Detailed, quantitative studies of strongly coupled QGP. d+Au as control.
- 2010—Ridge in high multiplicity p+p (LHC)! Probably CGC!
- Early 2010s—QGP in p+Pb!
- Early 2010s—QGP in d+Au!
- Mid 2010s and now-ish—QGP in high multiplicity p+p? QGP in mid-multiplicity p+p?? QGP in d+Au even at low energies???

"Twenty years ago, the challenge in heavy ion physics was to find the QGP. Now, the challenge is to not find it." —Jürgen Schukraft, QM17

The ridge is a signature of flow

Extended structure away from near-side jet peak interpreted as collective effect due to presence of QGP

- First discovered by STAR in Au+Au in 2004 (PRC 73, 064907 (2006) and PRL 95, 152301 (2005))
- Realized by STAR to be flow in 2009 (PRL 105, 022301 (2010))
- First found in small systems by CMS (JHEP 1009, 091 (2010) and PLB 718, 795 (2013))

First results at RHIC

PHENIX (RB), Phys. Rev. C 88, 024906 (2013) PHENIX (AS), Phys. Rev. Lett. 111, 212301 (2013)

- First paper measuring v_2 in d+Au at RHIC by Anne!
- Paper based on my PhD thesis found baryon enhancement in d+Au similar to that in Au+Au

Small systems geometry scan

Adjusting nuclear species to access different geometries

Highlights Recent Accepted Collections Authors Referees Search Press About A

Exploiting Intrinsic Triangular Geometry in Relativistic $^{3}\mathrm{He}+\mathrm{Au}$ Collisions to Disentangle Medium Properties

J. L. Nagle, A. Adare, S. Beckman, T. Koblesky, J. Orjuela Koop, D. McGlinchey, P. Romatschke, J. Carlson, J. E. Lynn, and M. McCumber Phys. Rev. Lett. **113**, 112301 – Published 12 September 2014

- Collective motion translates initial geometry into final state distributions
- To determine whether small systems exhibit collectivity, we can adjust the geometry and compare across systems
- We can also test predictions of hydrodynamics with a QGP phase

nature physics

Letter | Published: 10 December 2018

Creation of quark-gluon plasma droplets with three distinct geometries

PHENIX Collaboration

Nature Physics 15, 214–220(2019) Cite this article

nature physics

The geometry of a quark-gluon plasma

BLACK HOLES Analogue horizons

TOPOLOGICAL INSULATORS A local marker

MORPHOUS SUPERCONDUCTIVITY Energy of preformed pairs

R. Belmont, UNCG UIUC seminar, 15 February 2021 - Slide 24

PHENIX (RB), Nat. Phys. 15, 214-220 (2019)

-Collective motion of system translates the initial geometry into the final state

R. Belmont, UNCG UIUC seminar, 15 February 2021 - Slide 25

v₂ and v₃ vs p_T predicted or described very well by hydrodynamics in all three systems
 —All predicted (except v₂ in d+Au) in J.L. Nagle et al, PRL 113, 112301 (2014)
 —v₃ in p+Au and d+Au predicted in C. Shen et al, PRC 95, 014906 (2017)

 Initial state effects alone do not describe the data —Phys. Rev. Lett. 123, 039901 (Erratum) (2019)

PHENIX (RB), Nat. Phys. 15, 214-220 (2019)

Important to include initial state effects
 B. Schenke et al, Phys. Lett. B 803, 135322 (2020)
Comparisons with STAR

STAR, Quark Matter 2019

Good agreement between STAR and PHENIX for $\ensuremath{\textit{v}}_2$

Comparisons with STAR

STAR, Quark Matter 2019

Good agreement between STAR and PHENIX for v_2

Large discrepancy between STAR and PHENIX for v_3

PHENIX data update

- PHENIX has completed a new analysis confirming the results published in Nature Physics
- All new analysis using two-particle correlations with event mixing instead of event plane method —Completely new and separate code base
- Measurement error ruled out-discrepancy must be due to physics

PHENIX data update

- PHENIX has completed a new analysis confirming the results published in Nature Physics
- All new analysis using two-particle correlations with event mixing instead of event plane method —Completely new and separate code base
- Measurement error ruled out-discrepancy must be due to physics

STAR and PHENIX detector comparison

- The Nature Physics paper uses the BBCS-FVTXS-CNT detector combination —This is very different from the STAR analysis
- We can try to use FVTXS-CNT-FVTXN detector combination to better match STAR —Closer, and "balanced" between forward and backward, *but still different*

More STAR and PHENIX data comparisons

• Good agreement with STAR for v_2

-Similar physics for the two different pseudorapidity acceptances

More STAR and PHENIX data comparisons

- Good agreement with STAR for v_2
 - -Similar physics for the two different pseudorapidity acceptances
- Strikingly different results for v_3
 - -Rather different physics for the two different pseudorapidity acceptances
 - —Decorrelation effects much stronger for v_3 than v_2

More STAR and PHENIX data comparisons

- Good agreement with STAR for v_2
 - -Similar physics for the two different pseudorapidity acceptances
- Strikingly different results for v_3
 - -Rather different physics for the two different pseudorapidity acceptances
 - —Decorrelation effects much stronger for v_3 than v_2

RR Initial Stages 2021

- The large difference between the PHENIX published and STAR preliminary in this case is nonflow
- PHENIX suppresses nonflow via kinematic selection

RB Initial Stages 2021

- The large difference between the PHENIX published and STAR preliminary in this case is nonflow
- PHENIX suppresses nonflow via kinematic selection
- STAR applies non-flow subtraction procedure
- One needs to be careful about the risk of over-subtraction methods—S. Lim et al (RB), Phys. Rev. C 100, 024908 (2019)

RR Initial Stages 2021

- The large difference between the PHENIX published and STAR preliminary in this case is nonflow
- PHENIX suppresses nonflow via kinematic selection

RR Initial Stages 2021

- The large difference between the PHENIX published and STAR preliminary in this case is nonflow
- PHENIX suppresses nonflow via kinematic selection
- STAR applies non-flow subtraction procedure
- Considerable improvement in nonflow subtraction in STAR 2019 preliminary, reasonable agreement with PHENIX

Small systems beam energy scan

Fix the geometry, vary the collision energy

Testing hydro by controlling system size and life time

Geometry in d+Au collisions dominated by deuteron shape, thus largely independent of collision energy

Spacetime volume of system in QGP phase decreases with decreasing collision energy

PHENIX (RB), Phys. Rev. C 96, 064905 (2017)

- Hydro theory agrees with higher energies very well, underpredicts lower energies
- Likely need different EOS for lower energies; influence of conserved charges likely more important at lower energies (see e.g. M. Martinez et al, arXiv:1911.10272, 1911.12454)
- Nonflow likelier to be an issue due to lower multiplicity at lower energies

PHENIX (RB), Phys. Rev. Lett. 120, 062302 (2018)

PHENIX (RB), Phys. Rev. Lett. 120, 062302 (2018)

PHENIX (RB), Phys. Rev. Lett. 120, 062302 (2018)

• Measurement of $v_2{6}$ in d+Au at 200 GeV and $v_2{4}$ in d+Au at all energies

• Multiparticle correlations can be a good indicator of collectivity

How about *extremely* small systems?

Extremely small systems in AMPT

J.L. Nagle et al (RB), Phys. Rev. C 97, 024909 (2018)

- A single color string $(e^++e^- \text{ collisions})$ shows no sign of collectivity
- Two color strings shows collectivity —In AMPT, p+p has two strings and $p/d/^{3}$ He+Au have more

Extremely small systems at LEP

Badea et al, Phys. Rev. Lett. 123, 212002 (2019)

No apparent collectivity in ALEPH e^++e^- data

- Brought up as a possibility in e.g. P. Romatschke, Eur. Phys. J. C 77, 21 (2017)
- Not expected in parton escape picture (see previous slide)
- \bullet Not expected (below $\sqrt{s}\approx7$ TeV) in e.g. P. Castorina et al, arXiv:2011.06966

Extremely small systems at HERA and the EIC

Abt et al, JHEP 04, 070 (2020)

"The correlations observed here do not indicate the kind of collective behaviour recently observed at the highest RHIC and LHC energies in high-multiplicity hadronic collisions."

No collectivity in e+p collisions at HERA \rightarrow Not likely to find collectivity in e+p collisions at EIC But what about e+A collisions?

Considerable interest in this topic within EIC community (see talks by R. Milner, E. Ferreiro, others...)

Extremely small systems at the LHC

ATLAS Preliminary, Initial Stages 2021

- Observation of collectivity in photonuclear collisions
- Collective picture: photon fluctuates into a vector meson (e.g. ρ), not so different from p+Pb
- Initial state picture: CGC calculation in good agreement, further investigation needed

Part III: the future

The 2015 Long Range Plan for Nuclear Science

https://www.science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf

Recommendation I: The progress achieved under the guidance of the 2007 Long Range Plan has reinforced U.S. world leadership in nuclear science. The highest priority in this 2015 Plan is to capitalize on the investments made. —CEBAF, FRIB, Symmetries & Neutrinos, RHIC (BES II & sPHENIX)

Recommendation II: We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment.

Recommendation III: We recommend a high-energy high-luminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB.

Recommendation IV: We recommend increasing investment in small-scale and mid-scale projects and initiatives that enable forefront research at universities and laboratories.

sPHENIX: QGP microscope

From the LRP: [The goal is to] probe the inner workings of QGP by resolving its properties at shorter and shorter length scales.... essential to this goal... is a state-of-the-art jet detector at RHIC, called sPHENIX.

sPHENIX: QGP microscope

Resolving power $d \propto \lambda$ de Broglie wavelength $\lambda = h/p$ λ р 2.5 eV 500 nm 100 keV 12 pm 200 MeV 6.2 fm 1 GeV 1.2 fm 10 GeV 0.12 fm 50 GeV 0.025 fm

sPHENIX: timeline

Past and present

 Magnet purchase 	July 2013
 Magnet delivery 	April 2015
• DOE OPA CD-0	September 2016
 Order for Outer HCal steel 	March 2018
 DOE OPA CD-1/CD-3a 	August 2018
 DOE OPA PD-2/PD-3 Review 	May 2019
 Authorization for PD-2/PD-3 	September 2019
 Fabrication orders 	September 2019 (Ongoing)
Future	
 Installation begins 	April 2021
 Installation complete 	July 2022
 Initial commissioning complete 	September 2022
 First collisions 	January 2023

sPHENIX: magnet

STANDARD FOR JUNE 1974	M 122	TRANSFER ORDER					1. ORDER NO.			
GENERAL SERV	ICES	EXCESS PERSONAL PROPERTY					SLAC 2013-07-18			
FPMR (41 CFR) 101 FPMR (41 CFR) 101	FPMR (41 CFR) 101-33.306 FPMR (41 CFR) 101-43.315					2. DATE July 18, 2013				
3. TO: GENERAL SERVICES ADMINISTRATION			4. ORDERING AGENCY (Full name and address)*							
			Attention: John Haggerty: haggerty@bnl.gov							
			Upton, NY 11973-5000							
5. HOLDING AGENCY (Name and address)*				6. SHIP TO (Consignee and destination)*						
SLAC National Accelerator Laboratory					an er i a ferendigtion men antin antin A					
2575 Sand Hill Road, MS 85A										
Menio Park, CA 94025				Same as block 4						
SLAC National Accelerator Laboratory			8. SHIPPING INSTRUCTIONS							
C/O Mike Racine										
2575 Sand Hill Ro	oad, MS	3 53								
. Menio Park, CA 1 650 026-3643 roo	Menio Park, CA 94025									
000 szo-3543 tacmegystac.stanioro.edu				ISINE to arrange for snipping						
A SIGNATURE				Inc. active and the second sec						
Como Ling 1-19-13				transfer to DE-AC02-98CH10886						
C. TITLED + CONTRACT				11. ALLOTMENT 12. GOVERNMENT BA. NO.						
13.	bor	my 10 winger	PROPERTY	ORDERED						
GSA AND		DESC					1701 000F			
HOLDING	ITEM	(Include noun nama, FSC Gro	e and			ACQUIS	THON COST			
AGENCY NOS. (a)	NO. (b)	il available, Nat		UNIT	QUANTITY	UNIT	TOTAL			
		Administra					(9)			
	1	BaBar Solenoid and Components			ea	1	12,000,000.00	\$ 12,000,000.00		
		Date of Mfr: 1996								
		(See attached list)								
		P Role		LULC	10	Echruppy	2021 61:1-46			

sPHENIX: magnet

sPHENIX: magnet

R. Belmont, UNCG

UIUC seminar, 15 February 2021 - Slide 45

R. Belmont, UNCG UIUC seminar, 15 February 2021 - Slide 46

R. Belmont, UNCG UIUC seminar, 15 February 2021 - Slide 46

R. Belmont, UNCG

R. Belmont, UNCG

UIUC seminar, 15 February 2021 - Slide 46

sPHENIX: HCal tiles

R. Belmont, UNCG UIUC seminar, 15 February 2021 - Slide 47
sPHENIX: jets!

R. Belmont, UNCG UIUC seminar, 15 February 2021 - Slide 48

sPHENIX: heavy flavor!

UIUC seminar, 15 February 2021 - Slide 49

sPHENIX: projections

- Lots of core sPHENIX measurements need flow expertise
- RB involved in recent NSF MRI for event plane detector

sPHENIX: day one EIC detector

sPHENIX EIC proposal: arXiv:1402.1209

An EIC Detector Built Around The sPHENIX Solenoid

A Detector Design Study

sPHENIX: day one EIC detector

Recently formed ECCE consortium dedicated to repurposing sPHENIX

Existing Infrastructure

- Existing BaBar solenoid (1.5T), flux return and cradle
 - Substantial investment/risk reduction
- IP8 infrastructure
 - Cryogenic connection to RHIC
 - Racks, mechanical, safety, electrical, etc.
- Potential re-use/refurbish existing sPHENIX detectors as appropriate
- ECCE consortium has considerable recent DOE project experience

Currently under construction, sPHENIX represents a \$27M investment by DOE (MIE)

ECCE

Summary and outlook

- We can recreate the early universe in the lab using collisions of large nuclei
- Small systems have had a lot of surprises for us-definitely not a control experiment
- The key tool we've used is having a variety of nuclear species to control the collision geometry
 - -The geometry scan used projectiles to compare intrinsic geometry with fluctuations
 - —The beam energy scan used the same projectile to compare intrinsic geometry with fluctuations
- QGP droplet formation is on a strong footing —Experimental results inspiring lots of progress in hydro theory
- It's an exciting time for nuclear physics in the US

Summary and outlook

- We can recreate the early universe in the lab using collisions of large nuclei
- Small systems have had a lot of surprises for us-definitely not a control experiment
- The key tool we've used is having a variety of nuclear species to control the collision geometry
 - -The geometry scan used projectiles to compare intrinsic geometry with fluctuations
 - —The beam energy scan used the same projectile to compare intrinsic geometry with fluctuations
- QGP droplet formation is on a strong footing —Experimental results inspiring lots of progress in hydro theory
- It's an exciting time for nuclear physics in the US

"The optimist regards the future as uncertain."-Eugene Wigner

Extra material

Phys. Rev. Lett. 120, 062302 (2018)

 $v_2{4} = (-c_2{4})^{1/4}$

Negative c_2 {4} means real v_2 {4}

Phys. Rev. Lett. 120, 062302 (2018)

Phys. Rev. Lett. 120, 062302 (2018)

 c_2 {4} is positive in p+Au

Can we blame this on nonflow?

Phys. Rev. Lett. 120, 062302 (2018)

Use of subevents further suppresses nonflow

Positive c_2 {4} in p+Au doesn't seem to be related to nonflow

Cumulants in p+Au and d+Au at 200 GeV

Ultracold Fermi Gas

J. Thomas et al, NCSU

Ultracold Fermi Gas

J. Thomas et al. NCSU

String Theory Limit: "Perfect" Fluids

Viscosity measurement in a unitary Fermi gas is motivated by a recent conjecture derived using string theory methods. The conjecture states that for a broad class of strongly interacting fields, the ratio of shear viscosity n to the entropy density s has a universal minimum:

s : Entropy density

A fluid with the minimum ratio is referred to as a perfect fluid. In a Fermi gas, we are able to measure both the entropy and the viscosity, connecting thermodynamics and hydrodynamics in strongly correlated systems.

Viscosity (over entropy density)

Ultracold Fermi gases: few times the lower bound Quark-gluon plasma: very close to the lower bound

CGC results on small systems

• New for QM18: v_2 and v_3 for small systems

CGC results on small systems

M. Mace et al, Phys. Rev. Lett. 121, 052301 (2018)

- New for QM18: v_2 and v_3 for small systems
- v_3 ordering is wrong in CGC —CGC: p+Au < d+Au < 3 He+Au —Data: p+Au \approx d+Au < 3 He+Au

Photons in small systems

Photons in small systems

• Thermal photons in p+Au?

Photons in small systems

• Thermal photons in p+Au? Theory from Phys. Rev. C 95, 014906 (2017)

Photon yields

Common scaling for Au+Au and Pb+Pb at different energies; very different from N_{coll} -scaled p+p

Photon yields

Common scaling for Au+Au and Pb+Pb at different energies; very different from N_{coll} -scaled p+p

p+Au and d+Au in between

AMPT

AMPT with no scattering

J.D. Orjuela Koop et al Phys. Rev. C 92, 054903 (2015)

- Turn off scattering in AMPT—remove all correlations with initial geometry $\sigma_{parton} = 0$ and $\sigma_{hadron} = 0$
- Participant plane v_2 goes to zero
- Other sources of correlation remain-non-flow

(b)

p_[GeV/c]

p [GeV/c]

(d)

AMPT with no scattering

J.D. Orjuela Koop et al Phys. Rev. C 92, 054903 (2015)

- Turn off scattering in AMPT—remove all correlations with initial geometry $\sigma_{parton} = 0$ and $\sigma_{hadron} = 0$
- Participant plane v₂ goes to zero
- Other sources of correlation remain—non-flow

Phys. Rev. C 96, 064905 (2017)

• AMPT flow only shows good agreement at low p_T and all energies

Phys. Rev. C 96, 064905 (2017)

- AMPT flow only shows good agreement at low p_T and all energies
- AMPT flow+non-flow shows reasonable agreement for all p_T and all energies

Phys. Rev. C 96, 064905 (2017)

- AMPT flow only shows good agreement at low p_T and all energies
- AMPT flow+non-flow shows reasonable agreement for all p_T and all energies
- AMPT non-flow only far under-predicts for low p_T , too high for high p_T

Centrality

- Need to characterize the overlap of the two nuclei
- b (impact parameter)—separation between the centers of the two nuclei
- N_{part} —number of nucleons in the overlap region
- N_{coll}—number of nucleon-nucleon collisions

Higher b Lower Npart Lower Ncoll

Lower b Higher Npart Higher Ncoll

$\langle N_{\sf part} angle$	$\langle N_{\rm coll} \rangle$
382.7 ± 5.1	1685 ± 190
329.7 ± 4.6	1316 ± 140
260.5 ± 4.4	921 ± 96
186.4 ± 3.9	556 ± 55
128.9 ± 3.3	320 ± 32
85.0 ± 2.6	171 ± 16
52.8 ± 2.0	84.3 ± 7
30.0 ± 1.3	37.9 ± 3
15.8 ± 0.6	15.6 ± 1
≡ 2	$\equiv 1$
	$ \begin{array}{c} \langle N_{\text{part}} \rangle \\ \hline 382.7 \pm 5.1 \\ 329.7 \pm 4.6 \\ 260.5 \pm 4.4 \\ 186.4 \pm 3.9 \\ 128.9 \pm 3.3 \\ 85.0 \pm 2.6 \\ 52.8 \pm 2.0 \\ 30.0 \pm 1.3 \\ 15.8 \pm 0.6 \\ \hline \equiv 2 \end{array} $

Centrality

- Need to characterize the overlap of the two nuclei
- b (impact parameter)—separation between the centers of the two nuclei
- N_{part} —number of nucleons in the overlap region
- N_{coll}—number of nucleon-nucleon collisions

Centrality	$\langle N_{\rm maxt} \rangle$	$\langle N_{\rm coll} \rangle$
	\ ' part/	
PD+PD		
0-5%	382.7 ± 5.1	1685 ± 190
5-10%	329.7 ± 4.6	1316 ± 140
10-20%	260.5 ± 4.4	921 ± 96
20-30%	186.4 ± 3.9	556 ± 55
30-40%	128.9 ± 3.3	320 ± 32
40-50%	85.0 ± 2.6	171 ± 16
50-60%	52.8 ± 2.0	84.3 ± 7
60-70%	30.0 ± 1.3	37.9 ± 3
70-80%	15.8 ± 0.6	15.6 ± 1
p+p	$\equiv 2$	$\equiv 1$

Centrality

- Need to characterize the overlap of the two nuclei
- b (impact parameter)—separation between the centers of the two nuclei
- N_{part} —number of nucleons in the overlap region
- N_{coll}—number of nucleon-nucleon collisions

The six flavors of quarks

flavor	charge	mass
down	-1/3 e	3.0–7.0 MeV
up	2/3 e	1.5–3.0 MeV
strange	-1/3 e	95 ± 25 MeV
charm	2/3 e	1.25 ± 0.09 GeV
bottom	-1/3 e	4.70 \pm 0.07 GeV
top	2/3 e	174.2 \pm 3.3 GeV

- No bound states with top quarks
 - (so heavy they decay weakly before a bound state can be formed)
- All others can form bound states
 - -Any combination of quarks you can imagine is allowed
 - -Though some have to be part of a linear combination
 - -Sometimes a single combination can be more than one particle

The six flavors of quarks

flavor	charge	mass
down	-1/3 e	3.0–7.0 MeV
up	2/3 e	1.5–3.0 MeV
strange	-1/3 e	$95~\pm~25$ MeV
charm	2/3 e	1.25 ± 0.09 GeV
bottom	-1/3 e	$4.70\pm0.07\text{GeV}$
top	2/3 e	$174.2\pm3.3~{ m GeV}$

A few examples

• p = uud, n = udd• $\pi^+ = u\bar{d}$, $\pi^- = \bar{u}d$, $\pi^0 = (u\bar{u} - d\bar{d})/\sqrt{2}$ • $\Lambda^0 = uds$, $\Lambda^+_c = udc$, $\Lambda^0_b = udb$ • $K^- = \bar{u}s$, $D^+ = \bar{d}c$, $B^- = \bar{u}b$ • $c\bar{c} = \eta_c$, J/ψ , χ_c , h_c
Suppression of high energy particles

• $R_{AA} < 1$ means particles are suppressed

Suppression of high energy particles

- R_{AA} decreases (more suppression) with increasing N_{part} (bigger system)
- $\bullet~\mbox{More medium} \to \mbox{more stuff}$ in the way $\to~\mbox{more suppresssion}$
- System size/geometry important aspect of suppression

PHENIX

- Weighs approximately 3000 tons
- Three separate magnet systems (Central Arms and Muon North and South) weighing 1700 tons alone
- 16 detector subsystems and about 5,000,000 (silicon) plus 300,000 (other) electronics channels
- 30 feet tall, 40 feet wide, 60 feet long
- Very fast DAQ system—7 kHz, 1 GB/s
- Ideally suited for measurements of rare probes, electrons, muons, high p_T photons, etc.

PHENIX

R. Belmont, UNCG UIUC seminar, 15 February 2021 - Slide 70

arXiv:1804.10024 (submitted to Phys. Rev. C)

 $1 < |\eta| < 3$

 $\sigma_{v_2}/\langle v_2 \rangle$

Central: breakdown of small-variance limit

Peripheral: non-linearity in hydro response (e.g. J. Noronha-Hostler et al Phys. Rev. C 93, 014909 (2016))

arXiv:1804.10024 (submitted to Phys. Rev. C)

$$1 < |\eta| < 3$$

Cannot extract

 $\sigma_{v_3}/\langle v_3
angle$

arXiv:1804.10024 (submitted to Phys Rev C)

 \bullet Can extract $\langle v_2 \rangle$ and σ_{v_2} separately using forward-fold

arXiv:1804.10024 (submitted to Phys Rev C)

 \bullet Can extract $\langle v_3 \rangle$ and σ_{v_3} separately using forward-fold

Fluctuations in large systems

PHOBOS, Phys. Rev. C 81, 034915 (2010)

Fluctuations should also be translated, so measure $\sigma_{v_2}/\langle v_2 \rangle$

 $|\eta| < 1$

Generally good agreement with models of initial geomtry

Fluctuations in large systems

PHENIX, arXiv:1804.10024 (submitted to Phys. Rev. C)

Fluctuations should also be translated, so measure $\sigma_{v_2}/\langle v_2 \rangle$

 $1 < |\eta| < 3$

Generally good agreement with models of initial geometry

Fluctuations in large systems

PHENIX, arXiv:1804.10024 (submitted to Phys. Rev. C)

Fluctuations should also be translated, so measure $\sigma_{v_2}/\langle v_2 \rangle$

 $1 < |\eta| < 3$

Central: breakdown of small-variance limit

Peripheral: non-linearity in hydro response (e.g. J. Noronha-Hostler et al Phys. Rev. C 93, 014909 (2016))

Components and cumulants in p+Au and d+Au at 200 GeV

Phys. Rev. Lett. 120, 062302 (2018)

• Fluctuations could dominate in the p+Au...

Back to basics (a brief excursion)

The (raw) moments of a probability distribution function f(x):

$$\mu_n = \langle x^n \rangle \equiv \int_{-\infty}^{+\infty} x^n f(x) dx$$

The moment generating function:

$$M_{x}(t) \equiv \langle e^{tx} \rangle = \int_{-\infty}^{+\infty} e^{tx} f(x) dx = \int_{-\infty}^{+\infty} \sum_{n=0}^{\infty} \frac{t^{n}}{n!} x^{n} f(x) dx = \sum_{n=0}^{\infty} \mu_{n} \frac{t^{n}}{n!}$$

Moments from the generating function:

$$\mu_n = \left. \frac{d^n M_x(t)}{dt^n} \right|_{t=0}$$

Key point: the moment generating function uniquely describe f(x)

Back to basics (a brief excursion)

Can also uniquely describe f(x) with the cumulant generating function:

$$K_x(t) \equiv \ln M_x(t) = \sum_{n=0}^{\infty} \kappa_n \frac{t^n}{n!}$$

Cumulants from the generating function:

$$\kappa_n = \left. \frac{d^n K_x(t)}{dt^n} \right|_{t=0}$$

Since $K_{x}(t) = \ln M_{x}(t)$, $M_{x}(t) = \exp(K_{x}(t))$, so

$$\mu_n = \frac{d^n \exp(K_x(t))}{dt^n} \bigg|_{t=0}, \quad \kappa_n = \frac{d^n \ln M_x(t)}{dt^n} \bigg|_{t=0}$$

End result: (details left as an exercise for the interested reader)

$$\mu_n = \sum_{k=1}^n B_{n,k}(\kappa_1, ..., \kappa_{n-k+1}) = B_n(\kappa_1, ..., \kappa_{n-k+1})$$

$$\kappa_n = \sum_{k=1}^n (-1)^{k-1} (k-1)! B_{n,k}(\mu_1, ..., \mu_{n-k+1}) = L_n(\kappa_1, ..., \kappa_{n-k+1})$$

Evaluating the Bell polynomials gives

One can tell by inspection (or derive explicitly) that κ_1 is the mean, κ_2 is the variance, etc.

Back to basics (a brief excursion)

Subbing in $x = v_n$, $\kappa_2 = \sigma^2$, we find

$$\begin{pmatrix} \langle \mathbf{v}_n^4 \rangle = \mathbf{v}_n^4 + 6\mathbf{v}_n^2\sigma^2 + 3\sigma^4 + 4\mathbf{v}_n\kappa_3 + \kappa_4 \end{pmatrix} - \left(2\langle \mathbf{v}_n^2 \rangle^2 = 2\mathbf{v}_n^4 + 4\mathbf{v}_n^2\sigma^2 + 2\sigma^4 \right) \rightarrow \\ \langle \mathbf{v}_n^4 \rangle - 2\langle \mathbf{v}_n^2 \rangle^2 = -\mathbf{v}_n^4 + 2\mathbf{v}_n^2\sigma^2 + \sigma^4 + 4\mathbf{v}_n\kappa_3 + \kappa_4$$

Skewness s: $\kappa_3 = s\sigma^3$ Kurtosis k: $\kappa_4 = (k-3)\sigma^4$

$$v_n\{2\} = (v_n^2 + \sigma^2)^{1/2}$$

$$v_n\{4\} = (v_n^4 - 2v_n^2\sigma^2 - 4v_ns\sigma^3 - (k-2)\sigma^4)^{1/4}$$

So the fully general form is a bit more complicated than we tend to think...

Eccentricity distributions and cumulants

$$\varepsilon_2\{4\} = (\varepsilon_2^4 - 2\varepsilon_2^2\sigma^2 - 4\varepsilon_2s\sigma^3 - (k-2)\sigma^4)^{1/4}$$

	p+Au	d+Au
ε_2^4	0.00531	0.0983
$2arepsilon_2^2\sigma^2$	0.00277	0.0370
$4arepsilon_2 s \sigma^3$	0.00147	-0.0053
$(k-2)\sigma^4$	0.00031	-0.0001

- the variance brings ε_2 {4} down (this term gives the usual $\sqrt{v_2^2 - \sigma^2}$)
- positive skew brings ε_2 {4} further down, negative skew brings it back up
- kurtosis > 2 brings ε_2 {4} further down, kurtosis < 2 brings it back up

—recall Gaussian has kurtosis = 3

Eccentricity distributions and cumulants

$$v_2\{4\} = (v_2^4 - 2v_2^2\sigma^2 - 4v_2s\sigma^3 - (k-2)\sigma^4)^{1/4}$$

• Eccentricity fluctuations alone go a long way towards explaining this

• Additional fluctuations in the (imperfect) translation of ε_2 to v_2 ?

Particle production in small systems

Small systems nuclear modification

• Forward modification consistent with nPDF effects (EPPS16)

• High- p_T modification consistent with nPDF effects (EPPS16)

Small systems nuclear modification

Small systems nuclear modification

• Don't forget: particle species dependence of Cronin! There must be final state effect(s)...

Particle species dependence of "Cronin enhancement"

PHENIX, Phys. Rev. C 88, 024906 (2013)

$$\pi^+, \pi^-, \pi^0, K^-, K^-, \mu, \bar{\rho}, \bar{\rho}, \phi$$

Protons much more strongly modified than pions

 ϕ mesons confusing as always...