Charge dependent flow measurements and the search for the Chiral Magnetic Wave in ALICE

Ron Belmont Wayne State University On behalf of the ALICE Collaboration

Quark Matter XXIV Darmstadt, Hessen, Deutschland 20 May 2014

Physics Motivation: the Chiral Magnetic Wave

- Coupling between Chiral Magnetic Effect (CME) and Chiral Separation Effect (CSE) leads to wave propagation of electric quadrupole moment, which leads to charge dependence of elliptic flow
- Kharzeev and Yee, Phys. Rev. D83, 085007 (2011)
- Burnier, Kharzeev, Liao, and Yee, Phys. Rev. Lett. 107, 052303 (2011)

STAR results on v_2^{\pm} and Δv_2 vs A, 30–40% centrality

- STAR preliminary, arXiv:1211.3216
- Charge asymmetry $A_{\pm} = A = (N^+ N^-)/(N^+ + N^-)$
- Note change in y-axis scale on right plot—correction for efficiency/acceptance
- Qualitatively consistent with CMW picture

v_2^{\pm} and Δv_2 vs A, 30–40% centrality in ALICE

- Strong, clear signal
- Qualitatively consistent with STAR results

v_2^{\pm} and Δv_2 vs A, 30–40% centrality in ALICE

- Strong, clear signal
- Qualitatively consistent with STAR results
- Using random subevents with half the track population weakens signal
- Observable has significant efficiency dependence

Proposal for new measurement: 3-particle correlator

- v_2^\pm and Δv_2 vs A
 - Interesting! But requires efficiency correction due to negative binomial sampling

Proposal for new measurement

- $\langle \cos(n(\varphi_1 \varphi_2))q_3 \rangle$
 - $\langle \cos(n(\varphi_1 \varphi_2)) \rangle = v_n^2$
 - q_3 is charge of third particle (event averaged q_3 is same as A)
- Factorize to remove charge independent flow contribution: $\langle \cos(n(\varphi_1 - \varphi_2))q_3 \rangle - \langle q_3 \rangle \langle \cos(n(\varphi_1 - \varphi_2)) \rangle$
- Deviations from $0 \rightarrow$ charge dependent flow
- We use 2-particle Q-cumulant to calculate $\langle \cos(n(\varphi_1 \varphi_2)) \rangle c_n\{2\}$ integral, $d_n\{2\}$ differential

Features of new measurement

- Efficiency correction not needed
- Both integral and differential measurements can be done
- Possibility for easier and better comparisons across experiments

Results

Experimental details

Detector subsystems:

- ITS: vertex, tracking
- V0A+C: trigger, centrality
- TPC: centrality, tracking

Data sample:

- Year 2010 data set
- Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- $\approx 12 \text{ M}$ events analyzed

Track selection:

- 0.2 < p_T < 5.0 (GeV/c)
- -0.8 $< \eta <$ 0.8
- $0 < \varphi < 2\pi$

Results

Conclusion

3-particle correlator: efficiency independent

• The correlator is identical when using random subevents (half the tracks are selected randomly), indicating it is unaffected by detector efficiency

Results

Conclusion

3-particle correlator: efficiency independent

• The correlator is identical when using random subevents (half the tracks are selected randomly), indicating it is unaffected by detector efficiency

3-particle correlator: 2nd harmonic

What causes the increased charge separation as the collisions become more peripheral?

- $\bullet \ \ \mathsf{Peripheral} \to \mathsf{stronger} \ \mathsf{magnetic} \ \mathsf{field} \to \mathsf{stronger} \ \mathsf{CMW} \ \mathsf{effect?}$
- Central \rightarrow more combinatoric pairs \rightarrow trivial dilution of local charge conservation (LCC) effects?
- Dependence on magnitude of v_2 or dN/dy?
- Some combination of these (and possibly other) effects?

3-particle correlator: comparison to HIJING

- No observed effect in HIJING
- Note that HIJING has 3 particle correlations like 3 body decays

3-particle correlator: higher harmonics

- CMW quadrupole expected to affect only 2nd harmonic, LCC expected to affect all harmonics
- Small effect for 3rd harmonic, no observed effect for 4th harmonic —Note y-axis scale reduced by ×10 compared to 2nd harmonic
- Higher order multipole effects for CMW or harmonic interference? LCC only?

Results

3-particle correlator vs $\Delta \eta$

- $\bullet\,$ We can directly measure the η range and dependence of the charge dependent effect
- LCC and CMW correlations may have different η ranges, providing an additional experimental constraint
- This observable best (but not only) way to compare across experiments with different η acceptance

Understanding mean charge vs $\Delta \eta$

ALI-PREL-73382

- $\langle q_3 \rangle$ denotes mean charge
- $\langle q_3^{\pm}
 angle$ denotes mean charge depending on charge of particle 1 q_1
- The mean charge of the third particle is significantly affected by the charge of the first particle (e.g. LCC, balance function)
- How does this affect the three particle correlator?

Results

3-particle correlator vs $\Delta \eta$

- The observed effect has a large contribution from the dependence of q_3 on q_1
- Both the strength and range are significantly reduced, but a pronounced charge dependent effect remains
- How much contribution from charge conservation has been removed? Is there some way to remove all LCC effects leaving only CMW?

3-particle correlator vs $\Delta \eta$ for higher harmonics

- Charge *independent* subtraction
- Moderate effect for 3rd, minimal effect for 4th

3-particle correlator vs $\Delta \eta$ for higher harmonics

- Charge dependent subtraction
- Very little effect for either

Conclusion and Outlook

- Integrated 3 particle correlator has strong centrality dependence —LCC and dilution? CMW and B-field strength? Magnitude of v₂, dN/dy? Other?
- $\bullet\,$ Differential 3 particle correlator directly measures the η range, providing additional constraints
- Selection on q1 for subtraction influences the differential correlator —How much of the LCC effect has been removed? Input from theory needed!
- $\bullet\,$ Differential correlator is the best (though not only) way to compare across experiments with different η acceptance
- Small but non-negligible charge dependence of third harmonic —Higher order multipole moments of P-violating effects, interference from flow harmonics? LCC only?
- Danke schön!

Additional material

R. Belmont, Wayne State University Quark Matter, Darmstadt, 20 May 2014 - Slide 17

Results

CSE

-

Conclusion

Physics Motivation: the Chiral Magnetic Wave

Chiral Magnetic, Separation Effect:

$$\vec{J}_{V} = \frac{N_{c}e}{2\pi^{2}}\mu_{A}\vec{B}, \quad \vec{J}_{A} = \frac{N_{c}e}{2\pi^{2}}\mu_{V}\vec{B}$$
Thermodynamics:

$$\vec{J}_{V} = \frac{N_{c}e}{2\pi^{2}}\chi\rho_{A}\vec{B}, \quad \vec{J}_{A} = \frac{N_{c}e}{2\pi^{2}}\chi\rho_{V}\vec{B}$$
Chiral basis:

$$\vec{B} \uparrow \qquad \vec{B} \uparrow \qquad \vec{R}$$

$$\vec{B} \uparrow \qquad \vec{R}$$

$$\vec{B} \uparrow \qquad \vec{R}$$

$$\vec{R} \downarrow \qquad \vec{V}_{2} \times v_{2} \times v_{$$

$$\vec{J}_L = -\frac{N_c e}{2\pi^2} \chi \rho_L \vec{B}, \quad \vec{J}_R = \frac{N_c e}{2\pi^2} \chi \rho_R \vec{B}$$

- Kharzeev and Yee, Phys. Rev. D83, 085007 (2011)
- Burnier, Kharzeev, Liao, and Yee, Phys. Rev. Lett. 107, 052303 (2011)

Motivation

Experiment

Results

Conclusion

Physics Motivation: the Chiral Magnetic Wave

Azimuthal distribution of charges:

$$rac{dQ}{d\phi} = Q[1 - r_e \cos(2\phi)]$$

Definition of charge asymmetry A:

$$A = \frac{Q}{N^{total}} = \frac{N^+ - N^-}{N^+ + N^-}$$

Azimuthal distribution of particles:

$$\frac{dN^{\pm}}{d\phi} = N^{\pm} [1 + (2\nu_2 \mp r_e A)\cos(2\phi)]$$

Burnier, Kharzeev, Liao, and Yee, Phys. Rev. Lett. 107, 052303 (2011)

Results

Conclusion

Physics Motivation: Topological Charge

QCD vacuum is highly non-trivial!

Topological charge, winding number, Chern-Simons number:

$$Q_w=rac{g^2}{32\pi^2}\int d^4x\,F^a_{\mu
u} ilde{F}^{\mu
u}_a\in\mathbb{Z}.$$

• Instanton: tunneling through barrier (all energies/temperatures, including 0)

• Sphaleron: jumping over barrer (only sufficiently high temperatures/energies)

Results

Conclusion

Physics Motivation: the Chiral Magnetic Effect

- Kharzeev, McLerran, and Warringa, Nucl. Phys. A803, 227 (2008)
- Presence of non-zero topological charge causes some chiralities to flip example: $Q_w = -1 \Rightarrow L \rightarrow R, R \rightarrow R$
- Problem: Q_w fluctuates about 0, electric dipole averages to 0

Methodology—Direct Cumulants

Definition of flow vectors

$$Q_{n,x} = \sum_{i=1}^{M} \cos n\varphi_i = \Re \ Q_n$$
$$Q_{n,y} = \sum_{i=1}^{M} \sin n\varphi_i = \Im \ Q_n$$

Direct cumulant method for integral flow

$$\langle \cos(n(\varphi_1 - \varphi_2)) \rangle = \frac{Q_n Q_n^* - M}{M(M-1)}$$

= $c_n \{2\}$

• The flow coefficients can be calculated as $v_n = \sqrt{c_n \{2\}}$

In this analysis, particles 1 and 2 are always selected to be the same charge

Methodology—Direct Cumulants

Definition of single particle flow vectors

$$u_{n,x} = \cos n\varphi_i = \Re u_n$$
$$u_{n,y} = \sin n\varphi_i = \Im u_n$$

• Direct cumulant method for differential flow

$$\langle \cos(n(\varphi_1 - \varphi_2)) \rangle = \frac{u_n Q_n^* - 1}{M - 1}$$

= $d_n \{2\}$

- The flow coefficients can be calculated as $v_n = d_n \{2\} / \sqrt{c_n \{2\}}$
- In this analysis, the charge of particle 1 is selected while particle 2 is allowed to be from either charge