Energy Loss and Flavor Dynamics from Single Particle Measurements in PHENIX

> Ron Belmont Vanderbilt University 03 April 2009

Outline

- Introduction and Physics Motivation
- Experimental Setup
- Results and Discussion
- Conclusion and Outlook

Baryon/Meson Production

PRL.91.172301

Nucl.Phys.A.757:184-283

- Observed baryon enhancement at intermediate p_T
- Recombination may explain difference from jet fragmentation
- Need to extend p_T reach of measurement

Color Charge Dependence

S. Wicks et al - Nucl.Phys.A784:426-442,2007

S. Albino, B.A. Kniehl, and G. Kramer - NPB 725 (2005) 181

- Gluons expected to lose more energy by gluon radiation
- Gluon fraction is different for pion and proton
- Measurements of pion and proton R_{CP} and v_2 can help us study flavor dependence of energy loss

Jet Flavor Conversion

- Elastic scattering in medium can change flavor of leading parton of jet
 - Annihilation $q+q \leftrightarrow g+g$
 - Compton Scattering
 q+g ↔ g+q
- Differences in jet energy loss may be mitigated

W. Liu and R. Fries – PRC 77 (2008) 054902

PHENIX

- PHENIX Run 7
- Au+Au 200 GeV
- TOFW+ACC subsystems used for this analysis
 - TOFW new for Run 7
- RICH may be used in future studies

TOFW and Aerogel Detectors

- TOFW has 75 ps intrinsic timing resolution
- Aerogel has n=1.0113
- Together, they can be used to identify protons and pions to high p_T
 - At least 6 GeV/c, possibly higher if the RICH is included in the PID for pions

Pion Spectra

- Previously published PHENIX measurements have had charged pion spectra up to 3 GeV/c
 - PRC.69.034909
- Our results extend to 5 GeV/c with greatly enhanced statistical precision

Proton Spectra

- Previously published PHENIX measurements have had proton/antiproton spectra up to 4.5 GeV/c
 - PRC.69.034909
- Our results extend to 5 GeV/c with greatly enhanced statistical precision

Centrality Dependence of p/π Ratio

- p/π increases
 significantly with
 increasing centrality
- p/π peaks at mid p_T and falls off

Model Comparisons of p/π Ratio

- All models shown agree for $p_T < 2 \text{ GeV/c}$
- Disparities show up at higher p_T

Centrality Dependence of p/p Ratio

- p/p is roughly flat for all centralities
- p is expected to have larger gluon contribution, but ratio does not fall with p_T up to 5 GeV/c

Nuclear Modification: R_{CP}

- R_{CP} = Yield(central)/Yield(peripheral)*N_{coll}(peripheral)/N_{coll}(central)
- Protons not suppressed at intermediate p_T
- At higher p_T proton R_{CP} approaches but does not merge with pion R_{CP}
- R_{CP} consistent with recombination models

Quark Scaling and v₂

- $KE_T = (p_T^2 + m^2)^{1/2} m_0$
- Scaling breaks at KE_T/nq > 1 GeV
- (Thermal) Recombination does not dominate for $p_T > 4$ GeV/c
 - Could be TT \rightarrow TS for mesons and TTT \rightarrow TTS \rightarrow TSS for baryons (see e.g. Hwa arXiv:0801.2183)

$R_{CP} \text{ and } v_2$

	R _{CP}	v ₂
reco	1	1
eloss	\downarrow	1

Relative change for protons to pions

- Recombination dominates for $p_T 2-4$ GeV/c
- Jet fragmentation takes over at higher p_{T}
- At high p_T pion and proton have similar v_2 , possibly suggesting flavor conversion

Double R_{CP}

- Flavor conversion $r(p/\pi) \sim 1$
- No flavor conversion $r(p/\pi) < 1$
- No sensitivity in this p_T range

Conclusion and Outlook

- Recombination models qualitatively describe proton R_{CP} and p/π ratio for $p_T = 1-4$ GeV/c
- The p/p ratio and R_{CP} of p & p indicates similar energy loss for particles and antiparticles
- R_{CP} and identified v_2 results indicate interplay between recombination and other mechanisms
- The double $R_{CP}[p/\pi]$ seems not to be sensitive to jet flavor effects below 5 GeV/c
- Higher p_T is needed for a better test, stay tuned

Backup Slides

p/pi in p+p and d+Au

- d+Au is like peripheral Au+Au
- p+p is lower
- PRC.74.024904

19

Hydro comparisons

03 April 2009

R. Belmont

RCP from recombination

Baryon/Meson Production

PRL.91.172301

PRC.74.024904

- Observed baryon enhancement at intermediate p_T
- Recombination may explain difference from jet fragmentation
- Need to extend p_T reach of measurement

p/pi from eloss

