

Ron Belmont University of Colorado Boulder

Quark Matter 2018 Lido di Venezia, Veneto, Italia 14 May 2018

Collectivity

PHENIX at Quark Matter 2018

15 papers submitted since last Quark Matter (and 10 of those featured here)

10 talks and 19 posters at this Quark Matter

√s [GeV]	֎֏֎	p+AI	p <mark>+Au</mark>	d+Au	³ Hetau	Cuton	Cu+Au	Au+Au	U+U
510	\bigcirc								
200	\bigcirc	\checkmark	Ø	Ø	Ø	Ø	Ø	Ø	\checkmark
130								Ø	
62.4	Ø					Ø		Ø	
39				Ø				Ø	
27									
20				Ø		\bigcirc		Ø	
14.5								Ø	
7.7									

Collectivity

PHENIX at Quark Matter 2018

15 papers submitted since last Quark Matter (and 10 of those featured here)

10 talks and 19 posters at this Quark Matter

√s [GeV]	ս +Գ	p+AI	p <mark>+Au</mark>	d+Au	3Hetau	Curton	Cu+Au	Au+Au	U+U
510	\bigotimes								
200	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigotimes	\bigotimes	\bigotimes	\oslash
130									
62.4	\checkmark			\bigcirc				Ø	
39				Ø				\bigotimes	
27								Ø	
20				\oslash				Ø	
14.5								Ø	
7.7									

Outline

High- p_T hadrons

—Correlation measurements and search for factorization breaking in p+p

-Measurements of light hadron modification in small and large systems

Heavy flavor

—Comprehensive measurements of J/ψ modification in small and large systems

-First measurement of bottom flow in Au+Au

Collectivity

-Observation of geometrical correlations in small systems

-Strongest evidence to date for QGP formation in small systems

Electromagnetic probes

—Observation of photon enhancement at low p_T in p+Au, consistent with QGP formation

-Observation of scaling relation of photon production in large systems

High- p_T hadrons

"PHENIX results on jet modification with π^{0} - and photon-triggered two particle correlations in p+p, p(d)+Au, and Au(Cu)+Au collisions" Joe Osborn, Wednesday 16/05/2018, 9:00

"PHENIX study of the initial state with forward hadron measurements in 200 GeV p(d)+A and ³He+Au collisions" Jason Bryslawskyj, Wednesday 16/05/2018, 16:50

π^{0} - h^{\pm} and γ - h^{\pm} correlations

arxiv:1805.02450 (submitted to PRD)

π^{0} - h^{\pm} and γ - h^{\pm} correlations

γ - h^{\pm} correlations in Au+Au

Joe Osborn, Wednesday 16/05/2018, 9:00

I_{AA} of away side hadron (previous)

γ - h^{\pm} correlations in Au+Au

Joe Osborn, Wednesday 16/05/2018, 9:00

 I_{AA} of away side hadron (new)

More statistics and isolation cut significantly improve precision of I_{AA}

Collectivity

Small systems nuclear modification

Jason Bryslawskyj, Wednesday 16/05/2018, 16:50

Forward modification consistent with nPDF effects (EPPS16)

Collectivity

Small systems nuclear modification

Jason Bryslawskyj, Wednesday 16/05/2018, 16:50

High- p_T modification consistent with nPDF effects (EPPS16)

Collectivity

Small systems nuclear modification

Jason Bryslawskyj, Wednesday 16/05/2018, 16:50

Collectivity

Small systems nuclear modification

Jason Bryslawskyj, Wednesday 16/05/2018, 16:50

Collectivity

Small systems nuclear modification

Jason Bryslawskyj, Wednesday 16/05/2018, 16:50

Don't forget: particle species dependence of Cronin! There must be final state effect(s)...

High- p_T hadrons: Summary

 p_{out} in p+p collisions similar to Drell-Yan behavior —Detailed theory comparisons are needed

 p_{out} in p+Al and p+Au collisions indicate initial-state broadening in p+A relative to p+p

Forward R_{pA} consistent with nPDF effects

Backward R_{pA} shows strong enhancement at intermediate p_T —Final state effects are important: radial flow, hadronization, etc...

High-p _T hadrons	Heavy flavor	Collectivity	Electromagnetic probes
Heavy flavor			

"Recent Quarkonia Studies from the PHENIX Experiment" Matt Durham, Monday 14/05/2018, 18:10

"Nuclear modification factor of charm and bottom quark yields in Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV by the PHENIX Experiment" Takashi Hachiya, Tuesday 15/05/2018, 16:00

"Measurements of charm, bottom, and Drell-Yan via dimuons in p+p and p+Au collisions $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ with PHENIX at RHIC" Yue Hang Leung, Wednesday 16/05/2018, 15:40

$c\bar{c}$ and bb from angular correlations in p+pYue Hang Leung, Wednesday 16/05/2018, 15:40 arXiv:1805.04075 (submitted to PRL) arXiv:1805.02448 (submitted to PRD) 16^{⊻10^{−9}} **⊻10^{_9}** dN/d∆∳ [rad⁻¹ pp $\rightarrow c\overline{c} X \rightarrow \mu^{+}\mu^{-} X$ PHENIX PHENIX pp $\rightarrow b\overline{b} X \rightarrow \mu^{\pm} \mu^{\pm} X$ dN/d∆∳ [rad⁻ n+n vs = 200GeV p+p vs = 200GeV ---- POWHEG o__ = 0.316mb POWHEG σ. = 3.94μb 12 PYTHIAv6 $\sigma = 0.343$ mb PYTHIAv6 σ_{LT} = 3.59μb PYTHIAv6 (pair creation) PYTHIAv6 (pair creation) 10 **PYTHIAv6 (flavor excitation)** PYTHIAv6 (flavor excitation) PYTHIAv6 (aluon splitting) PYTHIAv6 (aluon splitting) 1.5 8 > 3 GeV/c, 1.2 < In[#]I < 2.2 $p > 3 \text{ GeV/c}, 1.2 < \text{h}^{H} < 2.2$ 1.5 < m___ [GeV/c²] < 2.5 3.5 < m____ [GeV/c²] < 10.0 Global Uncertainty 12.0 Global Uncertainty 12.0% 0.5 2.5 3 ...- ∳__l[rad] 0 0.5 1.5 1.5 [[rad]

Pair creation at LO, flavor excitation and gluon splitting at NLO PYTHIA suggests $b\bar{b}$ dominated by pair creation

Heavy flavor

bb from angular correlations in p+p

Yue Hang Leung, Wednesday 16/05/2018, 15:40

arXiv:1805.04075 (submitted to PRL) arXiv:1805.02448 (submitted to PRD)

 $bar{b}$ cross-section consistent with previous measurements, larger than FONLL

Drell-Yan from angular correlations in p+p

arXiv:1805.04075 (PRL) arXiv:1805.02448 (PRD)

Drell-Yan well-described by NLO & PYTHIA

J/ψ nuclear modification in small systems

Matt Durham, Monday 14/05/2018, 18:10

 $J/\psi R_{AB}$: p+AI

Collectivity

Electromagnetic probes

J/ψ nuclear modification in small systems

Matt Durham, Monday 14/05/2018, 18:10

$$J/\psi R_{AB}$$
:
 $p+Au$

R. Belmont

Collectivity

Electromagnetic probes

J/ψ nuclear modification in small systems

Matt Durham, Monday 14/05/2018, 18:10

 $J/\psi R_{AB}$: ³He+Au

R. Belmont

Collectivity

Electromagnetic probes

J/ψ nuclear modification in all systems

Matt Durham, Monday 14/05/2018, 18:10

Small systems: p+AI, p+Au, d+Au, $^{3}He+Au$,

Large systems: Cu+Cu, Cu+Au, Au+Au, U+U,

Electromagnetic probes

$c \rightarrow e$ and $b \rightarrow e$ in Au+Au

Takashi Hachiya, Tuesday 15/05/2018, 16:00

New HF electron spectra, now using all available data

$c \rightarrow e$ and $b \rightarrow e$ in Au+Au

Takashi Hachiya, Tuesday 15/05/2018, 16:00

New HF electron spectra, now using all available data Different method and better precision compared to previous results

$c \rightarrow e$ and $b \rightarrow e$ in Au+Au

Takashi Hachiya, Tuesday 15/05/2018, 16:00

Bottom $v_2 > 0$

Collectivity

Small systems flow

Takashi Hachiya, Tuesday 15/05/2018, 16:00

Small systems flow—heavy flavor

Nonzero v_2 for heavy flavor in d+Au

Small systems flow—heavy flavor

Nonzero v_2 for heavy flavor in d+Au 3.22 σ , 2.16 σ for $v_2 > 0$ at backward, forward (99.9%, 98.5% one-sided)

New measurements of DY, $c\bar{c}$, $b\bar{b}$ cross-sections — $b\bar{b}$ production dominated by pair creation

Comprehensive set of measurements of J/ψ modification in small systems

First measurement of charm-to-electron and bottom-to-electron v_2 in Au+Au —Clear charm flow

-First measurement of bottom flow at RHIC

First measurement of heavy flavor v_2 in small systems (d+Au) at RHIC

"Implications for small-system collectivity from a comprehensive set of soft physics measurements in a wide rapidity range in 200 GeV p+Au collisions by PHENIX" Qiao Xu, Monday 14/05/2018, 17:10

"PHENIX Results on elliptic and triangular flow from the small-system geometry scan at 200 GeV" Sylvia Morrow, Tuesday 15/05/2018, 11:10

"PHENIX Measurements of collectivity in Au+Au collisions from higher order cumulants and flow unfolding" Kurt Hill, Tuesday 15/05/2018, 15:40

"PHENIX Measurements of $dN_{ch}/d\eta$ in small systems (p+A, d+Au, and ³He+Au)" Darren McGlinchey, Wednesday 16/05/2018, 10:20

lign-p7 naurons	Tieavy Tiavor		Collectivity	Electromagnetic probes
Collectiv	vity in large systems			
Kurt Hill,	Tuesday 15/05/2018, 15:40		arXiv:1804.10024 (submitt	ed to Phys Rev C)
0.08 0.07 0.06	Au+Au √s _{NN} = 200 GeV n [±] 1< η <3 PHENIX	 v₂{2, ∆η >2} v₂{4} v₂{6} v₂{8} 	$1 < \eta < 3$	b
0.04			$v_2\{2\}, v_2\{4\}$	}, <i>v</i> ₂ {6},
0.02		-	∃ <i>V</i> 2{8}	

80 90 100 Centrality (%)

0.01

0

í٥

10

20

Sys. Uncert. 6%

40

50

60

70

30

Collectivity in large systems

Kurt Hill, Tuesday 15/05/2018, 15:40

arXiv:1804.10024 (submitted to Phys Rev C)

 $1 < |\eta| < 3$

 $\sigma_{v_2}/\langle v_2 \rangle$

Collectivity in large systems

Kurt Hill, Tuesday 15/05/2018, 15:40

Can extract $\langle \textit{v}_3 \rangle$ and $\sigma_{\textit{v}_3}$ separately using forward-fold

Testing hydro by controlling system geometry

Sylvia Morrow, Tuesday 15/05/2018, 11:10

arXiv:1805.02973, submitted to Nature Physics

Hydrodynamics translates initial geometry into final state

Test hydro hypothesis by varying initial state

	ε_2	ε_3
p+Au	0.24	0.16
d+Au	0.57	0.17
³ He+Au	0.48	0.23

PHENIX highlights at QM18

Collectivity

Longitudinal dynamics in small systems

Darren McGlinchey, Wednesday 16/05/2018, 10:20

p+Al, p+Au, d+Au, ³He+Au

Good agreement with wounded quark model Good agreement with 3D hydro

Small systems geometry scan

Sylvia Morrow, Tuesday 15/05/2018, 11:10

arXiv:1710.09736, accepted by Phys. Rev. C

Identified particle v_2 vs p_T in p+Au, d+Au, and ³He+Au — Mass ordering well-described by hydro

Testing hydro by controlling system geometry

Sylvia Morrow, Tuesday 15/05/2018, 11:10

arXiv:1805.02973, submitted to Nature Physics

Testing hydro by controlling system geometry

Sylvia Morrow, Tuesday 15/05/2018, 11:10

arXiv:1805.02973, submitted to Nature Physics

 v_2 and v_3 vs $p_{\mathcal{T}}$ described very well by hydro in all three systems —Strongly suggests QGP droplets in hydro evolution

First measurement of relative fluctuations $\sigma_{v_3}/\langle v_3 \rangle$ in Au+Au at RHIC

Comprehensive set of measurements for longitudinal dynamics

 v_2 and v_3 match ε_2 and ε_3 ordering in p+Au, d+Au, ³He+Au —Correlation is definitively geometrical in origin

 v_2 and v_3 in p+Au, d+Au, ³He+Au are well-described by hydro theory —Strongest evidence to date for QGP formation in small systems

Electromagnetic probes

"PHENIX measurement of low momentum direct photon radiation from p+p and p+A collisions" Vlad Khachatryan, Monday 14/05/2018, 16:50

Electromagnetic probes

Photons in small systems

Photons in small systems

Thermal photons in p+Au?

Photons in small systems

Thermal photons in p+Au? Theory from Phys. Rev. C 95, 014906 (2017)

Collectivity

Photon yields

Vlad Khachatryan, Monday 14/05/2018, 16:50 arXiv:1805.04084, submitted to Phys. Rev. Lett.

Common scaling for Au+Au and Pb+Pb at different energies; very different from N_{coll} -scaled p+p

Collectivity

Photon yields

Vlad Khachatryan, Monday 14/05/2018, 16:50

Common scaling for Au+Au and Pb+Pb at different energies; very different from N_{coll} -scaled p+p

p+Au in between

Collectivity

Electromagnetic probes

Electromagnetic probes: Summary

Observation of universal scaling for photon yields

Observation of low- p_T photon enhancement in p+Au

Possibly thermal photons, consistent with theory prediction —Would strongly support QGP droplets in hydro evolution

PHENIX at Quark Matter 2018

New papers highlighted here:

Phys. Rev. C 96, 064905 (2017)—Qiao Xu, Monday 14/05/2018, 17:10 Phys. Rev. Lett. 120, 062302 (2018)—Qiao Xu, Monday 14/05/2018, 17:10 arXiv:1710.09736, accepted by Phys. Rev. C—Sylvia Morrow, Tuesday 15/05/2018, 11:10 arXiv:1804.10024, submitted to Phys. Rev. C—Kurt Hill, Tuesday 15/05/2018, 15:40 arXiv:1805.02450, submitted to Phys. Rev. D—Joe Osborn, Wednesday 16/05/2018, 9:00 arXiv:1805.02973, submitted to Nature Physics—Sylvia Morrow, Tuesday 15/05/2018, 11:10 arXiv:1805.02448, submitted to Phys. Rev. D—Yue Hang Leung, Wednesday 16/05/2018, 15:40 arXiv:1805.04066, submitted to Phys. Rev. C—Vlad Khachatryan, Monday 14/05/2018, 16:50 arXiv:1805.04084, submitted to Phys. Rev. Lett.—Yue Hang Leung, Wednesday 16/05/2018, 15:40

Collectivity

PHENIX at Quark Matter 2018

"PHENIX measurement of low momentum direct photon radiation from p+p and p+A collisions"

Vlad Khachatryan, Monday 14/05/2018, 16:50

"Implications for small-system collectivity from a comprehensive set of soft physics measurements in a wide rapidity range in 200 GeV p+Au collisions by PHENIX"

Qiao Xu, Monday 14/05/2018, 17:10

"Recent Quarkonia Studies from the PHENIX Experiment"

Matt Durham, Monday 14/05/2018, 18:10

"PHENIX Results on elliptic and triangular flow from the small-system geometry scan at 200 GeV"

Sylvia Morrow, Tuesday 15/05/2018, 11:10

"PHENIX Measurements of collectivity in Au+Au collisions from higher order cumulants and flow unfolding"

Kurt Hill, Tuesday 15/05/2018, 15:40

"Nuclear modification factor of charm and bottom quark yields in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by the PHENIX Experiment"

Takashi Hachiya, Tuesday 15/05/2018, 16:00

"PHENIX results on jet modification with π^0 - and photon-triggered two particle correlations in p+p, p(d)+Au, and Au(Cu)+Au collisions"

Joe Osborn, Wednesday 16/05/2018, 9:00

"PHENIX Measurements of $dN_{ch}/d\eta$ in small systems (p+A, d+Au, and ³He+Au)"

Darren McGlinchey, Wednesday 16/05/2018, 10:20

"Measurements of charm, bottom, and Drell-Yan via dimuons in p+p and p+Au collisions $\sqrt{s_{AUA}} = 200$ GeV with PHENIX at RHIC"

Yue Hang Leung, Wednesday 16/05/2018, 15:40

"PHENIX study of the initial state with forward hadron measurements in 200 GeV p(d)+A and ³He+Au collisions" Jason Bryslawskyj, Wednesday 16/05/2018, 16:50

PHENIX at Quark Matter 2018

- 357—Forward rapidity open heavy flavor measurements at PHENIX in p+p and Au+Au collisions—Cesar da Silva
- 383—Azimuthal anisotropy of $b \rightarrow e$ and $c \rightarrow e$ in 200 GeV Au+Au collisions at RHIC-PHENIX—Takashi Hachiya
- 447—PHENIX results on centrality dependent Lévy analysis of two particle Bose-Einstein correlations in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions—Dániel Kincses
- 458—PHENIX Measurements of Bottom and Charm Quark Production at Mid Rapidity in p+p Collisions at $\sqrt{s} = 200$ GeV—Marzia Rosati
- 548—PHENIX beam energy and centrality dependence of direct photon emission in heavy ion collisions—Axel Drees
- 557—PHENIX results on Bose-Einstein correlation functions using a Levy analysis in Au+Au collisions at RHIC—Sándor Lökös
- 560—Comprehensive study of hadron production from small to large systems by PHENIX—Rich Seto
- 562-PHENIX results on collectivity in d+Au collisions from 200 to 19.6 GeV-Kenta Shigaki
- 567—Azimuthal anisotropy of high p_T hadrons via long-range two particle correlations in d-Au and p-p collisions by PHENIX—Brett Fadem
- 571—Low p_T direct photon production from small to large systems—Wenqing Fan

596—Centrality and momentum dependent energy loss of electrons from charm and bottom hadron decays in Au+Au collisions at $\sqrt{s_{NN}}$ 200 GeV at mid-rapidity by the PHENIX experiment—Kazuya Nagashima

- 690-The Study of Muon Production in Ultra-Peripheral Collisions in Au+Au and U+U in the PHENIX Experiment at RHIC-Xiaochun He
- 719—PHENIX results on three-dimensional Bose-Einstein correlations in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions—Bálint Kurgyis
- 720-Photon-Hadron Correlations in Heavy Ion Collisions from PHENIX-Tyler Danley
- 730—Upsilon Production in p+p, p+Au and Au+Au Collisions at large rapidity in the PHENIX Experiment at RHIC—Ming Liu
- 740—PHENIX measurements of charged hadron and heavy flavor v2 at forward/backward rapidity in d+Au collisions at $\sqrt{s_{MM}} = 200$ GeV—Darren McGlinchey
- 746—PHENIX measurement of J/ψ polarization via decay di-electron pairs produced in p+p collisions at $\sqrt{s} = 510$ GeV at mid-rapidity—Sookhyun Lee
- 796-PHENIX measurements of elliptic and triangular flow in d+Au collisions-Vicki Greene

853—PHENIX measurements of J/ψ and $\psi(2S)$ production at forward and backward rapidity in $p/d/^{3}$ He+Au and p+Al collisions at 200 GeV—Matt Durham

1000	h n.	_		
I II E	-D			

Collectivity

Electromagnetic probes

Additional Material

Additional Material

Collectivity

Electromagnetic probes

Testing hydro by controlling system geometry

Hydrodynamics translates initial geometry into final state

Test hydro hypothesis by varying initial state

	ε_2	ε_{3}
<i>p</i> +Au	0.24	0.16
d+Au	0.57	0.17
³ He+Au	0.48	0.23
$\varepsilon_2^{p+Au} < \varepsilon_2^q$	$_{2}^{\mathrm{HAu}} pprox$	$arepsilon_2^{3{\sf He}+{\sf Au}}$
$\varepsilon_3^{p+Au} \approx \varepsilon_3^{q}$	$d^{+Au} <$	$\varepsilon_3^{3\text{He}+Au}$

d+Au beam energy scan

Phys. Rev. Lett. 120, 062302 (2018) and Phys. Rev. C 96, 064905 (2017)

d+Au beam energy scan

Phys. Rev. Lett. 120, 062302 (2018) and Phys. Rev. C 96, 064905 (2017)

Measurement of v_2 {6} in d+Au at 200 GeV and v_2 {4} in d+Au at all energies

d+Au beam energy scan

Published since last QM

Phys. Rev. C 96, 064905 (2017)

Event plane v_2 vs p_T measured for all energies

d+Au beam energy scan

Published since last QM

Phys. Rev. C 96, 064905 (2017)

Event plane v_2 vs p_T measured for all energies Hydro theory agrees with higher energies very well, underpredicts lower energies—nonflow?

Collectivity

d+Au beam energy scan

Published since last QM

Phys. Rev. Lett. 120, 062302 (2018)

Collectivity

Longitudinal dynamics in small systems

Darren McGlinchey, Wednesday 16/05/2018, 10:20

 v_2 vs η in p+Al, p+Au, d+Au, and ³He+Au Good agreement with 3D hydro for p+Au and d+Au

Particle species dependence of "Cronin enhancement"

PHENIX, Phys. Rev. C 88, 024906 (2013)

