Overview of heavy ion physics at

Ron Belmont University of North Carolina Greensboro

XXV Cracow Epiphany Conference Krakow, Rzeczpospolita Polska 8 January 2019

Key ingredient of **nuclear** physics: Change the **nucleus**

√s [GeV]	թ +թ	p	ptau	d+Au	³ He ^{+Au}	Cuto	Cu+Au	Au+Au	U+U
510	\bigcirc								
200		Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
130								Ø	
62.4	Ø			Ø		Ø		Ø	
39				Ø				Ø	
27								Ø	
20				Ø		Ø			
14.5									
7.7								Ø	

Key ingredient of **nuclear** physics: Change the **nucleus**

√s [GeV]	_p+p	p	p <mark>łAu</mark>	d+Au	³ He+Au	Cu+Cu	Cu+Au	Au+Au	U+U
510									
200	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
130									
62.4									
39									
27						Ch.			
20 14 E									
14.5									
1.1									

Outline

Large systems

—Single particle R_{AA} results, multiple species and collisions	New!		
$-\pi^0$ -h correlations in Au+Au	New!		
—Spectra of charm and bottom in $p+p$	New!		
$-v_2$ of charm and bottom in Au+Au			
Small systems			
$-\pi^{0}-h$ correlations in ³ He+Au	New!		
—Drell-Yan measurement in p +Au	New!		
—Longitudinal dynamics in small systems	Now published!		
—Small systems geometry scan	Now published!		
—Direct photon measurements in $p+Au$			

Large Systems

Identified particle R_{AA} in large systems

 ω and ϕ mesons behave similarly in Cu+Cu, Cu+Au, Au+Au

Identified particle R_{AA} in Cu+Au

Similar behavior for all species

π^0 -*h* in Au+Au

Broadening of the away side for low p_T , similar width at high p_T

π^0 -*h* in Au+Au

Depletion at high p_T , enhancement at low p_T

$${{\it R}_{\it I}} = rac{Y^{AA}_{away}/Y^{AA}_{near}}{Y^{pp}_{away}/Y^{pp}_{near}}$$

HF electron spectra, all centralities and using all available data

$c \rightarrow e$ and $b \rightarrow e$ in Au+Au and p+p

New!

HF electron spectra, all centralities and using all available data New p+p reference data; new publication with R_{AA} on the way!

$c \rightarrow e$ and $b \rightarrow e$ in Au+Au

$c \rightarrow e$ and $b \rightarrow e$ in Au+Au

Both smaller than light flavor

Single particle R_{AA} independent of collision species when selecting for similar N_{part}

Neutral mesons R_{AA} very similar in Au+Au despite different strangeness content —Strangeness very important at low p_T but not at high p_T

Correlation measurements show away-side broadening and low p_T enhancement —Indicates momentum shift and large-angle radiation of high- p_T partons

Measurement of $c \rightarrow e$ and $b \rightarrow e$ spectra in p+p—Publication with new R_{AA} coming soon

First measurement of bottom flow at RHIC —May be consistent with zero, refinements and publication forthcoming Small Systems

π^0 -*h* in small systems

New!

High- z_T depletion with low- z_T enhancement resembles large systems How to understand? Need detailed theory calculations

Drell-Yan from angular correlations in p+p

arXiv:1805.04075 (PRL) arXiv:1805.02448 (PRD)

Drell-Yan well-described by NLO pQCD & PYTHIA

Drell-Yan from angular correlations in p+Au

New!

Hints of modification to Drell-Yan in p+Au, though large uncertainties prevent a firm conclusion

New!

New!

 $p+AI \rightarrow p+Au$ —big change when increasing nuclear target size

New!

 $p+AI \rightarrow p+Au$ —big change when increasing nuclear target size

New!

 $p+AI \rightarrow p+Au$ —big change when increasing nuclear target size $p+Au \rightarrow {}^{3}He+Au$ —small change when increasing projectile size

Longitudinal dynamics in small systems

Now published!

Phys. Rev. Lett. 121, 222301 (2018)

p+Al, p+Au, d+Au, ³He+Au

Good agreement with wounded quark model Good agreement with 3D hydro

Longitudinal dynamics in small systems

Now published!

Phys. Rev. Lett. 121, 222301 (2018)

 v_2 vs η in p+Al, p+Au, d+Au, and ³He+Au Good agreement with 3D hydro for p+Au and d+Au

Now published!

arXiv:1805.02973, in press (Nature Physics)

 v_2 and v_3 ordering matches ε_2 and ε_3 ordering in all three systems —Regardless of mechanism, the correlation is geometrical

Overview of heavy ion physics at PHENIX

 v_2 and v_3 vs $p_{\mathcal{T}}$ described very well by hydro in all three systems —Strongly suggests QGP droplets in hydro evolution

 v_2 and v_3 vs $p_{\mathcal{T}}$ described very well by hydro in all three systems —Strongly suggests QGP droplets in hydro evolution

Initial state model does good job for v_2 but misses strong geometry dependence of v_3

Photons in small systems

Photons in small systems

Thermal photons in p+Au?

Photons in small systems

Thermal photons in p+Au? Theory from Phys. Rev. C 95, 014906 (2017)

Photon yields

arXiv:1805.04084, submitted to Phys. Rev. Lett.

Common scaling for Au+Au and Pb+Pb at different energies; very different from N_{coll} -scaled p+p

Photon yields

Common scaling for Au+Au and Pb+Pb at different energies; very different from N_{coll} -scaled p+p

p+Au and d+Au in between

First measurement of Drell-Yan in small systems at RHIC —Hint of enhancement but no firm conclusions

Comprehensive set of measurements of longitudinal dynamics —Good support for wounded quark model and 3D hydro

Geometry scan results published in Nature Physics —Hydro does better than initial state

Photon enhancement in small systems

-Important additional evidence in support of QGP droplet formation in small systems

Additional Material

 v_3 ordering is not quite right —CGC: $p+Au < d+Au < {}^{3}He+Au$ —Data: $p+Au \approx d+Au < {}^{3}He+Au$

Small systems flow—heavy flavor

Nonzero v_2 for heavy flavor in d+Au

Small systems flow—heavy flavor

Nonzero v_2 for heavy flavor in d+Au 3.22 σ , 2.16 σ for $v_2 > 0$ at backward, forward (99.9%, 98.5% one-sided)

Small systems geometry scan

Phys. Rev. C 97, 064904 (2018)

Identified particle v_2 vs p_T in p+Au, d+Au, and ³He+Au —Mass ordering well-described by hydro

Phys. Rev. Lett. 120, 062302 (2018)

R. Belmont

Phys. Rev. Lett. 120, 062302 (2018)

Phys. Rev. C 96, 064905 (2017)

Event plane v_2 vs p_T measured for all energies

Phys. Rev. C 96, 064905 (2017)

Event plane v_2 vs p_T measured for all energies Hydro theory agrees with higher energies very well, underpredicts lower energies—nonflow?

Phys. Rev. Lett. 120, 062302 (2018)

Forward modification consistent with nPDF effects (EPPS16)

High- p_T modification consistent with nPDF effects (EPPS16)

Stronger effects in central collisions

Strong enhancement for backward at intermediate p_T —why?

Strong enhancement for backward at intermediate p_T —why? Don't forget: particle species dependence of Cronin! There must be final state effect(s)...

Particle species dependence of "Cronin enhancement"

Phys. Rev. C 88, 024906 (2013)

Small systems: p+AI, p+Au, d+Au, $^{3}He+Au$,

Large systems: Cu+Cu, Cu+Au, Au+Au, U+U,

$c\bar{c}$ and $b\bar{b}$ from angular correlations in p+p

arXiv:1805.04075 (submitted to PRL) arXiv:1805.02448 (submitted to PRD)

PYTHIA suggests $b\bar{b}$ dominated by pair creation

$b\bar{b}$ from angular correlations in p+p

arXiv:1805.04075 (submitted to PRL) arXiv:1805.02448 (submitted to PRD)

 $b\bar{b}$ cross-section consistent with previous measurements, larger than FONLL

arXiv:1804.10024 (submitted to Phys Rev C)

arXiv:1804.10024 (submitted to Phys Rev C)

 $1 < |\eta| < 3$

 $\sigma_{v_2}/\langle v_2 \rangle$

arXiv:1804.10024 (submitted to Phys Rev C)

arXiv:1804.10024 (submitted to Phys Rev C)

Can extract $\langle v_2 \rangle$ and σ_{v_2} separately using forward-fold

arXiv:1804.10024 (submitted to Phys Rev C)

Can extract $\langle v_3 \rangle$ and σ_{v_3} separately using forward-fold