A brief review of recent results from the ALICE Collaboration

Ron Belmont Wayne State University On behalf of the ALICE Collaboration

> Lake Louise Winter Institute Lake Louise, Alberta, Canada 16 February 2015

ALICE

• 37 countries, 151 institutes, 1550 members

At sufficiently high temperature and/or density, the gauge coupling between quarks and gluons becomes sufficiently weak that deconfinement is achieved

Some basic information about the QGP:

- Particles produced in thermal abundances
- Hydrodynamical models describe the data very well, require fast thermalization at the parton level
- The matter is extremely hot, well in excess of the critical temperature $T_c \approx 150 \text{ MeV} (10^{12} \text{ K})$ -Stellar coronae 10^6 K -Core of white dwarf 10^7 K

 Use geometrical (Glauber model) simulations to determine the number of participating nucleons N_{part} and the number of binary nucleon-nucleon collisions N_{coll} from detector response

Phys. Rev. Lett. 106 (2011) 032301

. Rev. C 88 (2013) 044909		
Centrality	$\langle N_{part} \rangle$	$\langle N_{\rm coll} \rangle$
Pb-Pb		
0-5%	382.7 ± 5.1	1685 ± 190
5-10%	329.7 ± 4.6	1316 ± 140
10-20%	260.5 ± 4.4	921 ± 96
20-30%	186.4 ± 3.9	556 ± 55
30-40%	128.9 ± 3.3	320 ± 32
40-50%	85.0 ± 2.6	171 ± 16
50-60%	52.8 ± 2.0	84.3 ± 7
60-70%	30.0 ± 1.3	37.9 ± 3
70-80%	15.8 ± 0.6	15.6 ± 1
p-Pb	7.87 ± 0.55	$\equiv N_{\sf part}{-}1$
рр	≡ 2	$\equiv 1$

Nuclear modification factors

$$\begin{split} R_{\rm AB} &= {\rm Yield_{AB}}/(N_{\rm coll}{\rm Yield_{pp}}) \\ R_{\rm AB} &< 1 \rightarrow {\rm suppression \ of \ particles} \\ R_{\rm AB} &> 1 \rightarrow {\rm enhancement \ of \ particles} \\ R_{\rm AB} &= 1 \rightarrow {\rm no \ modification} \end{split}$$

- Significant suppression of particles in Pb-Pb at high p_T No suppression of particles in p-Pb at high p_T
- Observed suppression in Pb-Pb is not from "cold nuclear matter" measured in p-Pb—generally understood as partonic energy loss via collisional and radiative energy loss in a color-charged medium

Nuclear modification factors

$$\begin{split} R_{\rm AB} &= {\rm Yield_{AB}}/(N_{\rm coll}{\rm Yield_{pp}}) \\ R_{\rm AB} &< 1 \rightarrow {\rm suppression \ of \ particles} \\ R_{\rm AB} &> 1 \rightarrow {\rm enhancement \ of \ particles} \\ R_{\rm AB} &= 1 \rightarrow {\rm no \ modification} \end{split}$$

- No particle species dependence at high p_T Jet "chemistry" unmodified from vacuum fragmentation (in pp collisions)
- Particle species dependent behavior at intermediate p_T in both systems—generally understood as radial flow and hadronization by parton coalescence in Pb-Pb, but what about p-Pb?

$$\frac{dN}{d\varphi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \psi_n)) \qquad v_n = \langle \cos(n(\varphi - \psi_n)) \rangle$$

- Collisions that are not fully overlapping have almond-shape overlap region
- Pressure gradients drive outward expansion—initial state geometrical anisotropy drives final state momentum space anisotropy
- Symmetry about x-axis suggests vanishing odd-*n* terms—non zero terms indicate geometrical fluctuations

Flow and fluctuations

Phys. Rev. C 90 (2014) 054901

- Two particle correlations are a good probe for global correlations
- Non-flow proportional to 1/N, collective behavior has no explicit N dependence
- HIJING is an A-A event generator (no flow), shows expected power law behavior
- ALICE Pb-Pb data exhibit collective behavior when non-flow is removed with large $\Delta \eta$ (large η separation between the two particles)

- DPMJET is a p-A event generator (no flow), shows expected power law behavior
- ALICE p-Pb data exhibit similar collective behavior as seen in Pb-Pb when non-flow is removed

- Third harmonic results also show evidence of collective motion in both systems
- Indicative of geometrical fluctuations causing event by event triangularity in initial geometry

Flow and fluctuations

- Collective behavior observed in Pb-Pb –Strong mass ordering
 - -Baryons and mesons flip mass ordering and group together -Understood from hadronization by parton coalescence
- Similar behavior seen in p-Pb

 Strong mass ordering, flip of mass
 ordering of pions and protons
- Very different behavior in pp -Weaker mass ordering with no flip

- In off-central heavy ion collisions, the spectators generate an extremely large (but short lived) magnetic field perpendicular to the reaction plane
- Presence of non-zero topological charge induces chiral imbalance Connected to the $U(1)_A$ anomaly $\partial_{\mu} J^{\mu}_A = \frac{g^2}{32\pi^2} F^a_{\mu\nu} \tilde{F}^{\mu\nu}_a$
- Chiral imbalance leads to electric current when spins aligned by magnetic field $\vec{J}_V = \frac{N_c e}{2\pi^2} \mu_A \vec{B}$

Searches for parity violation in the strong sector

- Measurement of correlator $\langle \cos(\varphi_{\alpha} + \varphi_{\beta} 2\Psi) \rangle$ indicates charge separation along the reaction plane
- Evidence of Chiral Magnetic Effect (CME) and strong parity violation -Need to understand contributions from other sources

- Measurements of different species may help disentangle background sources
- Opposite sign correlator shows particle species dependence
- Input from theory needed to fully understand backgrounds and PID dependence

Searches for parity violation in the strong sector

- Chiral Magnetic Effect (CME) + Chiral Separation Effect (CSE) = Chiral Magnetic Wave (CMW)
- Observable: Charge dependence of elliptic flow with charge asymmetry
- ALICE data demonstrate $\Delta \eta$ dependence

Searches for parity violation in the strong sector

- Chiral Magnetic Effect (CME) + Chiral Separation Effect (CSE) = Chiral Magnetic Wave (CMW)
- Observable: Charge dependence of elliptic flow with charge asymmetry
- ALICE data demonstrate $\Delta \eta$ dependence
- Important to remove charge correlations

- Many, many more results to show than I have had time for here –Heavy ion physics is a rich and diverse field
 - -The field is becoming increasingly quantitative
- High p_T particles exhibit suppression in Pb-Pb but no modification in p-Pb
- Intermediate p_T particles show very interesting behavior in Pb-Pb and p-Pb
- Strong evidence of collective motion in Pb-Pb
- Similar (and surprising!) evidence of collective motion in p-Pb
- Hadronization plays a critical role in understanding observables
- Searches for strong parity violation show intriguing results –Essential feature of QCD
 - -Very important to understand backgrounds

Additional material

Thermal fits to ALICE data

- Thermal model assumes grand canonical ensemble
- Few parameters—T and V, μ_B fixed in this case (free at lower energies)
- Reproduces integrated yields of many different particle species over many orders of magnitude
- Sometimes ratios are used instead of yields, so V drops out and T and μ_B are the only free parameters
- Works extremely well over a very wide range of energies, from SPS to RHIC to LHC

Quantum correlations and system size

Phys. Lett. B 739 (2014) 139-151

- Quantum correlations can be used to estimate the system size R $\Delta x \Delta p \gg 2\pi \hbar$ (classical) $\Delta x \Delta p \approx 2\pi \hbar$ (quantum)
- Generally 2 indistinguishable particles are used
- ALICE the first to report 3-particle quantum correlations, which do not contain background from other kinds of 2-particle correlations

Quantum correlations and system size

Phys. Lett. B 739 (2014) 139-151

- Quantum correlations can be used to estimate the system size R $\Delta x \Delta p \gg 2\pi \hbar$ (classical) $\Delta x \Delta p \approx 2\pi \hbar$ (quantum)
- Generally 2 indistinguishable particles are used
- ALICE the first to report 3-particle quantum correlations, which do not contain background from other kinds of 2-particle correlations
- Use of non-Gaussian function to fit correlation improves quality of fit and agreement between 2- and 3-particle correlations
- Parameter λ very close to chaotic limit—incoherent emission

Quantum correlations and system size

Phys. Lett. B 739 (2014) 139-151

- Quantum correlations can be used to estimate the system size R $\Delta x \Delta p \gg 2\pi \hbar$ (classical) $\Delta x \Delta p \approx 2\pi \hbar$ (quantum)
- Generally 2 indistinguishable particles are used
- ALICE the first to report 3-particle quantum correlations, which do not contain background from other kinds of 2-particle correlations
- Use of non-Gaussian function to fit correlation improves quality of fit and agreement between 2- and 3-particle correlations
- Parameter λ very close to chaotic limit—incoherent emission
- pp and p-Pb close together, Pb-Pb separate