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Outline

Particle production in small systems
—Final state effects are observed
—Photon modification consistent with QGP formation

Small systems geometry scan
—Observation that correlations are geometrical in origin
—Data well-reproduced by hydro

Small systems energy scan
—Similar correlations for all energies
—Non-trivial fluctuations
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Intermission

Particle production in small systems

R. Belmont, UNCG Small systems: some recent results Slide 3



Nuclear modification factor

We want to know if nuclear collisions are a simple superposition of nucleon-nucleon collisions,
or if something special is happening

Nuclear modification factor for A+B collisions

RAB =
Yield in A+B collisions

Appropriate scaling× Yield in p+p collisions

What’s the appropriate scaling? We call it Ncoll , the number of binary nucleon-nucelon
collisions

RAB = 1 means no modification

RAB > 1 means enhancement

RAB < 1 means suppression
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Centrality

Need to characterize the overlap of the two nuclei
b (impact parameter)—separation between the centers of the two nuclei
Npart—number of nucleons in the overlap region
Ncoll—number of nucleon-nucleon collisions

Centrality 〈Npart〉 〈Ncoll〉
Pb+Pb

0-5% 382.7 ± 5.1 1685 ± 190
5-10% 329.7 ± 4.6 1316 ± 140

10-20% 260.5 ± 4.4 921 ± 96
20-30% 186.4 ± 3.9 556 ± 55
30-40% 128.9 ± 3.3 320 ± 32
40-50% 85.0 ± 2.6 171 ± 16
50-60% 52.8 ± 2.0 84.3 ± 7
60-70% 30.0 ± 1.3 37.9 ± 3
70-80% 15.8 ± 0.6 15.6 ± 1

p+p ≡ 2 ≡ 1
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Small systems nuclear modification
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Forward modification consistent with nPDF effects (EPPS16)

Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...



Small systems nuclear modification
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High-pT modification consistent with nPDF effects (EPPS16)

Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...



Small systems nuclear modification
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Stronger effects in central collisions

Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...



Small systems nuclear modification
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Strong enhancement for backward at intermediate pT—why?

Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...



Small systems nuclear modification
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Strong enhancement for backward at intermediate pT—why?
Don’t forget: particle species dependence of Cronin! There must be final state effect(s)...



Particle species dependence of “Cronin enhancement”
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Phys. Rev. C 88, 024906 (2013)

π+, π−, π0,

K+, K−,

p, p̄,

φ

Protons much more strongly
modified than pions

φ mesons are heavier than protons



Comparison of peripheral Au+Au to central d+Au
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(Ask me about the baryon anomaly if you’d like to know more...)
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Photons in small systems
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Thermal photons in p+Au?

Theory from Phys. Rev. C 95, 014906 (2017)
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Photons in small systems
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Photons in small systems
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Photon yields
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Common scaling for Au+Au
and Pb+Pb at different
energies; very different from
Ncoll-scaled p+p
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Common scaling for Au+Au
and Pb+Pb at different
energies; very different from
Ncoll-scaled p+p

p+Au and d+Au in between



Brief summary: particle production in small systems

Strong modifications at forward & backward rapidities
—Not nPDF effects alone
—Additional initial state effects possible (e.g. the usual multiple scattering)

Nuclear modification strongly dependent on particle species
—Must be final state effect(s)
—Hadronization, radial flow, etc...
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Intermission

Small systems geometry scan
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Testing hydro by controlling system geometry
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Testing hydro by controlling system geometry
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Longitudinal dynamics in small systems
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Phys. Rev. Lett. 121, 222301 (2018)

p+Al, p+Au, d+Au, 3He+Au

Good agreement with wounded quark model

Good agreement with 3D hydro



Longitudinal dynamics in small systems
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Brief summary: small systems geometry scan

Comprehensive set of measurements for longitudinal dynamics

v2 and v3 match ε2 and ε3 ordering in p+Au, d+Au, 3He+Au
—Correlation is definitively geometrical in origin

v2 and v3 in p+Au, d+Au, 3He+Au are well-described by hydro theory
—Strongest evidence to date for QGP formation in small systems

Comprehensive set of measurements of longitudinal dynamics
—More 3d hydro calculations needed
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Intermission

Small systems beam energy scan
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Testing hydro by controlling system size and life time

Standard picture for A+A:
QGP in hydro evolution

What about small systems?
And lower energies?

Use collisions species and
energy to control system
size, test limits of hydro
applicability

t = 3 fm/c

t = 2 fm/c 200 GeV

62 GeV
20 GeV7.7 GeV

5.02 TeV

J.D. Orjuela Koop et al
Phys. Rev. C 93, 044910 (2016)

Spacetime volume
in QGP phase
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Longitudinal dynamics in the small systems beam energy scan
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v2 in the d+Au beam energy scan
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Recall that yesterday I said this breakdown might be blamed on “non-flow”
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Non-flow reduction approaches

vn = 〈cos(n(φsome particle − ψn))〉
v2
n = 〈cos(n(φsome particle − φsome other particle))〉

How to deal with “fake flow”?
—Kinematics
—Combinatorics

v2
n = 〈cos(n(φa − φb))〉
v4
n = 〈cos(n(φa + φb − φc − φd))〉
v6
n = 〈cos(n(φa + φb + φc − φd − φe − φf ))〉
v8
n = ...
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Nonflow approaches in AuAu
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Non-flow approaches in AuAu
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Favorable combinatorics
—Dilution factor ≡

⌊
N
k

⌋
/
(
N
k

)
≈ (k − 1)!/Nk−1

—Efficiently suppress few-particle correlations

Insights into fluctuations: “cumulant” vn{k}
mixes different moments of vn
—If Gaussian-ish fluctuations:

vn{2} = (v2
n + σ2)1/2

vn{4} ≈ vn{6} ≈ vn{8} ≈ (v2
n − σ2)1/2
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d+Au beam energy scan
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Measurement of v2{6} in d+Au at 200 GeV and v2{4} in d+Au at all energies
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d+Au beam energy scan
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d+Au beam energy scan

Select 10 < NFVTX
tracks < 30,

integrate

AMPT sees similar trend

Fluctuations?

〈v 2
n 〉 ± σ2 seems to completely

fail here...
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Components and cumulants in p+Au and d+Au at 200 GeV
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v2{4} complex
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Fluctuations very different in p+Au compared to d+Au?
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Back to basics (a brief excursion)

The (raw) moments of a probability distribution function f (x):

µn = 〈xn〉 ≡
∫ +∞

−∞
xnf (x)dx

The moment generating function:

Mx(t) ≡ 〈etx〉 =

∫ +∞

−∞
etx f (x)dx =

∫ +∞

−∞

∞∑
n=0

tn

n!
xnf (x)dx =

∞∑
n=0

µn
tn

n!

Moments from the generating function:

µn =
dnMx(t)

dtn

∣∣∣∣
t=0

Key point: the moment generating function uniquely describe f (x)
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Back to basics (a brief excursion)

Can also uniquely describe f (x) with the cumulant generating function:

Kx(t) ≡ lnMx(t) =
∞∑
n=0

κn
tn

n!

Cumulants from the generating function:

κn =
dnKx(t)

dtn

∣∣∣∣
t=0

Since Kx(t) = lnMx(t), Mx(t) = exp(Kx(t)), so

µn =
dn exp(Kx(t))

dtn

∣∣∣∣
t=0

, κn =
dn lnMx(t)

dtn

∣∣∣∣
t=0

End result: (details left as an exercise for the interested reader)

µn =
n∑

k=1

Bn,k(κ1, ..., κn−k+1) = Bn(κ1, ..., κn−k+1)

κn =
n∑

k=1

(−1)k−1(k − 1)!Bn,k(µ1, ..., µn−k+1) = Ln(κ1, ..., κn−k+1)
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Back to basics (a brief excursion)

Evaluating the Bell polynomials gives

〈x〉 = κ1

〈x2〉 = κ2 + κ21

〈x3〉 = κ3 + 3κ1κ2 + κ31

〈x4〉 = κ4 + 4κ1κ3 + 3κ22 + 6κ21κ2 + κ41

One can tell by inspection (or derive explicitly) that κ1 is the mean, κ2 is the variance, etc.
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Back to basics (a brief excursion)

Subbing in x = vn, κ2 = σ2, we find(
〈v4

n 〉 = v4
n + 6v2

nσ
2 + 3σ4 + 4vnκ3 + κ4

)
−
(

2〈v2
n 〉2 = 2v4

n + 4v2
nσ

2 + 2σ4
)

→
〈v4

n 〉 − 2〈v2
n 〉2 = −v4

n + 2v2
nσ

2 + σ4 + 4vnκ3 + κ4

Skewness s: κ3 = sσ3

Kurtosis k: κ4 = (k − 3)σ4

vn{2} = (v2
n + σ2)1/2

vn{4} = (v4
n − 2v2

nσ
2 − 4vnsσ

3 − (k − 2)σ4)1/4

So the fully general form is a bit more complicated than we tend to think...
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Eccentricity distributions and cumulants

2εeccentricity 
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2

ε〈p+Au, 
 = 0.24, s = -0.16, k = 1.97σ = 0.56, 〉

2
ε〈d+Au, 

ε2{4} = (ε42 − 2ε22σ
2 − 4ε2sσ

3 − (k − 2)σ4)1/4

p+Au d+Au
ε42 0.00531 0.0983
2ε22σ

2 0.00277 0.0370
4ε2sσ

3 0.00147 -0.0053
(k − 2)σ4 0.00031 -0.0001

the variance brings ε2{4} down (this term gives the
usual

√
v 2
2 − σ2)

positive skew brings ε2{4} further down, negative
skew brings it back up

kurtosis > 2 brings ε2{4} further down, kurtosis < 2
brings it back up
—recall Gaussian has kurtosis = 3
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Eccentricity distributions and cumulants
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Eccentricity fluctuations alone go a long way towards explaining this

Additional fluctuations in the (imperfect) translation of ε2 to v2?
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Brief summary: small systems beam energy scan

Measurement of v2 vs pT for d+Au at 200, 62.4, 39, and 19.6 GeV
—Hydro describes higher two energies well, misses lower two energies

Measurement of v2 vs η for d+Au at 200, 62.4, and 39 GeV
—Hydro theory at lower energies would be very useful

Measurement of v2{6} at 200 GeV and v2{4} at all four energies
—Nonflow should be combinatorially suppressed
—Important to take the highly non-trivial fluctuations seriously
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Learning goals for CME

Helicity is the projection of the spin along the trajectory

Chirality is kind of like helicity, but more fundamental

Parity (P) in 3 dimensions is the inversion of all spatial coordinates

Charge-parity (CP) is parity and flipping the charges

We can study fundamental symmetries of QCD with heavy ion physics by searching for P- and
CP-violation
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Helicity and Chirality

Helicity is ~s · ~p
—Right-handed: spin along momentum
—Left-handed: spin opposite to momentum
Chirality is an internal quantum number
—Same as helicity for massless particles
—Evolves with time for massive particles (Higgs)
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Chirality

Helicity and chirality are P-odd, meaning they change sign under parity transformation

Any state can be written as the sum of the left and right components, i.e.
ψ = ψR + ψL

A vector quantity is the sum of the chiral quantities, e.g. JµV = JµR + JµL
An axial quantity is the difference of the chiral quantities, e.g. JµA = JµR − JµL
Symmetry groups can also be represented this way,
GR × GL = GV × GA
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Chirality

Chiral symmetry and breaking

In general, there are three categories of symmetry breaking
–explicit: not actually present in the Lagrangian
–sponteous: present in the Lagrangian but lost in the equations of motion
–anomalous: present in the classical theory but lost in quantization

Chiral symmetry summary:
Symmetry Status Meaning or effect
SU(Nf )V Approximate flavor symmetry, pseudo-Goldstone bosons
SU(Nf )A Spontaneously broken 98% of nucleon mass
U(1)V Exact baryon conservation
U(1)A Anomalously broken chiral anomaly
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C, P, T, and CPT

C is charge conjugation
—Flip the sign of the charges

P is parity inversion
—Flip the spatial coordinates

T is time reversal
—Flip the time coordinate

CPT is do all three of these at the same time
—CPT theorem: any Lorentz invariant QFT is CPT invariant
—C, P, T can be broken alone or in pairs as long as CPT is preserved
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Parity

What is parity?

In 3 space dimensions, parity is the simultaneous inversion of all three dimensions

P

x
y
z

 =

−x−y
−z


Scalar quantities (e.g. mass, charge) are P-even

Vector quantities (e.g. momentum, electric field) are P-odd

Pseudo-vector quantities (e.g. angular momentum, magnetic field) are P-even
~L = ~r × ~p → ~L = −~r ×−~p
Parity was long believed to be conserved in all laws of physics

However...
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P-violation in weak interactions

Proposed by T.D. Lee and C.N. Yang, Phys. Rev. 104, 254 (1956)
Discovered by C.S. Wu et. al., Phys. Rev. 105, 1314 (1957)

Electron emission from 60Co → 60Ni + e + νe was found to be anti-parallel to
the nuclear spin—parity violation
Pauli was shocked and insisted the experiments be repeated
Wu’s experiment was repeatedly confirmed, and she should have gotten the
Nobel Prize in physics, as Lee and Yang did...
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P- and CP-violation in strong interactions

A non-zero neutron electric dipole moment (nEDM)
violates parity

A non-zero nEDM also violates time reversal, by
CPT theorem T-violation implies CP-violation

Measurements consistent with zero, strict upper
limits (2.9×10-26 e-cm)

The observed absence is surprising because of
“natural” CP-violating terms in the QCD
Lagrangian

L = −1

4
F a
µνF

µν
a −

θg2

32π2
F a
µν F̃

µν
a + ψ(i /D −me iθγ5)ψ

L = −1

4
F a
µνF

µν
a −

θg2

32π2
F a
µν F̃

µν
a + ψ(i /D −me iθ

′γ5)ψ

Strong CP problem: 0 ≤ θ < 10−10
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Topological charge and the QCD vacuum

Chern-Simons Current:

Kµ =
g 2

32π2
εµναβ

(
Aa
νF

a
αβ −

g

3
fabcA

a
νA

b
αA

c
β

)
Chern-Simons Number:

NCS =

∫
d3x K 0 ∈ Z

U(1)A anomaly:

∂µJ
µ
A = − g 2

32π2
F a
µν F̃

µν
a

Topological charge:

∆NCS = Qw =
g 2

32π2

∫
d4x F a

µν F̃
µν
a ∈ Z

(Transitions are instantons and sphalerons)
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The magnetic field in heavy ion collisions

The spectating protons are just
moving charged particles, so they
make a B-field

The peak strength strength is roughly
1014-16 T—largest magnetic field in
the known universe!

The spectators nominally define both
the magnetic field and the geometry,
so ψB ≈ ψRP

W.-T. Deng and X.-G. Huang
Phys. Rev. C 85, 044907 (2012)
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The Chiral Magnetic Effect

Chiral imbalance induced by quantum anomaly
Alignment of spins by external magnetic field induces electric current of chiral quarks

~JV =
e2

2π2
µA
~B

~J: P-odd, C-odd, CP-even ~B: P-even, C-odd, CP-odd
—This current is both P- and CP-violatingR. Belmont, UNCG Small systems: some recent results Slide 46



The CME correlator

The Fourier expansion from before but now including P-odd sine terms

dN

dϕ
∝ 1 + 2

∞∑
n=1

[vn cos nϕ+ an sin nϕ] an = 〈sin nϕ〉

Normally we ignore sine terms, but now we
need them

Positive particles go above the reaction
plane a+1 > 0

Negative particles go below the reaction
plane a−1 < 0

However...

Qw fluctuates about 〈Qw 〉 = 0, so
〈a±1 〉 = 0
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The CME correlator

What to do? Measure 2 particle correlation with respect to the reaction plane (Voloshin, Phys.
Rev. C 70 057901 (2004))

〈cos(φa + φb − 2ψRP)〉 = 〈cosϕa cosϕb〉 − 〈sinϕa sinϕb〉
= [〈v1,av1,b〉+ Bin]− [〈a1,aa1,b〉+ Bout ]

Same sign 〈a±1 a
±
1 〉 > 0

Opposite sign 〈a±1 a
∓
1 〉 < 0

Directed flow is rapidity-odd, 〈v1v1〉 ≈ 0

Optimistically, 〈cos(φa + φb − 2ψRP)〉 = −〈a1,aa1,b〉

However...

RP dependent backgrounds remain

If dipole fluctuations, 〈v1v1〉 6= 0
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The first CME results (STAR)

STAR, Phys. Rev. C 81, 054908 (2010)

Strong negative correlation for same sign, consistent with CME expectation
No correlation of opposite sign
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Backgrounds

Charge dependent anisotropic flow..., QM 2014, Darmstadt, May 2014 page S.A. Voloshin

LCC in azimuth and (pseudo)rapidity

14

Δφ Δθ ≈ Δη

Larger radial flow narrows pair distribution in azimuth 
as well as in pseudorapidity

Charge dependent anisotropic flow..., QM 2014, Darmstadt, May 2014 page S.A. Voloshin

LCC in azimuth and (pseudo)rapidity

14

Δφ Δθ ≈ Δη

Larger radial flow narrows pair distribution in azimuth 
as well as in pseudorapidity

LCC: local charge conservation—charges are created in ± pairs at a single space-time point
Angle between pairs is collimated by the radial+anisotropic flow background
Simple and intuitive mechanism for generating charge-dependent angular correlations
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Backgrounds

S. Schlichting and S. Pratt, Phys. Rev. C 83 014913 (2011)
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Construct a simple model of LCC+flow using the Blastwave model
Results show very good agreement with STAR CME correlator results (OS-SS)
However, the absence of OS correlation and the strong SS correlation is not explained in
this (simple) model
This may indicate that the CME correlator results contain a combination of background
and new physics
Regardless, we need a dedicated study to confront the backgrounds
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Isobaric collisions

Why isobars?
Different Z means different B-field (change signal)
Same A means same multiplicity (fix background)
Similar shape means similar v2 (fix background)

Requirements ∆Z = 4 and non-zero abundance

Low Z nucl High Z nucl B2 ratio

96
40Zr 96

44Ru 1.21

124
50 Sn 124

54 Xe 1.17

130
52 Te 130

56 Ba 1.16

136
54 Xe 136

58 Ce 1.15

Lighter pairs offer higher B2 ratio (good)
Heavier pairs offer higher multiplicity
—better EP resolution (good), more detector occupancy (bad)
Which is the best is non-trivial, but Zr/Ru is the run plan
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Isobaric collisions

Nuclear structure is more important than previously thought in heavy ions

Most nuclei are not spherical, and the deviations from sphericity can vary widely

Ellipticity shape parameter β2 affects the initial eccentricity ε2 in heavy ion collisions and
therefore the measured v2

Recent STAR results: v2 much higher in ultra-central U+U compared to ultra-central
Au+Au

Deformation may also affect B-field

Possible problem: Zr/Ru are not spherical, may not have the same shape, shape parameters
not especially well-known

Case 1: β2[9640Zr] = 0.080, β2[9644Ru] = 0.158

Case 2: β2[9640Zr] = 0.217, β2[9644Ru] = 0.053

Opportunity: measure v2 in ultra-central Zr+Zr and Ru+Ru to determine relative β2
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Isobaric collisions

CME Task Force Report, arXiv:1608.00982
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Possible problem: Zr/Ru are not spherical, may not have the same shape
Solution: for the most part this doesn’t actually matter
Solution 1: Multiplicities are identical except for very central
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Isobaric collisions

CME Task Force Report, arXiv:1608.00982
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Possible problem: Zr/Ru are not spherical, may not have the same shape
Solution: for the most part this doesn’t actually matter
Solution 2: B-field and eccentricity aren’t so different
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Isobaric collisions

CME Task Force Report, arXiv:1608.00982
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Possible problem: Zr/Ru are not spherical, may not have the same shape
Solution: for the most part this doesn’t actually matter
Solution 3: Expected signal difference stronger than differences in ε2
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Brief summary

Topological transitions in the QCD vacuum lead to P- and CP-violating effects

Such effects may be measurable in heavy ion physics

The measurements so far indicate significant background contamination

Isobaric collisions from 2018 will hopefully shed light on the issue
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Final thoughts

Collisions of large nuclei create the quark gluon plasma, a state of matter that existed in
the early universe

Collisions of small+large and small+small nuclei also appear to create the QGP, or at least
something very similar to the matter created in collisions of large nuclei

Collisions of large nuclei create the largest magnetic field in the known universe

We hope to test fundamental symmetries of QCD using heavy ion physics

Thanks!
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Additional material
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p/π ratios, revisited

PHENIX, Phys. Rev. C 88, 024906 (2013)
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Strong centrality dependence of p/π ratios in d+Au collisions as well
How to understand? Recombination?
—See Hwa and Yang, Phys. Rev. Lett. 93, 082302 (2004)
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Testing hydro by controlling system geometry
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v2 and v3 vs pT described very well by hydro in all three systems
—Strongly suggests QGP droplets in hydro evolution

Initial state model does good job for v2 but misses strong geometry dependence of v3
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Small systems geometry scan
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v2 vs η, comparison with AMPT
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AMPT flow only agrees with mid and forward rapidity very well, misses backward rapidity

AMPT flow+non-flow is very similar at mid and forward
AMPT flow+non-flow shows striking anti-correlation at backward rapidity
AMPT non-flow only shows nothing at mid and forward, large v2 at backward rapidity near the
detector
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v2 vs pT , comparisons to AMPT
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v2 vs pT , comparisons to AMPT
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AMPT flow only shows good agreement at low pT and all energies



v2 vs pT , comparisons to AMPT
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AMPT flow only shows good agreement at low pT and all energies
AMPT flow+non-flow shows reasonable agreement for all pT and all energies



v2 vs pT , comparisons to AMPT
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AMPT flow only shows good agreement at low pT and all energies
AMPT flow+non-flow shows reasonable agreement for all pT and all energies
AMPT non-flow only far under-predicts for low pT , too high for high pT



Intermission

The CGC strikes back?
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CGC results on small systems

Can qualitatively reproduce harmonic ordering
Off from data by a factor of 2 to 3
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K. Dusling et al, Phys. Rev. Lett. 120, 042002 (2018)



CGC results on small systems

Can reproduce v2{2} and v2{4}
Disagreement with data by a factor of 2, but qualitative features match
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K. Dusling et al, Phys. Rev. Lett. 120, 042002 (2018)



CGC results on small systems

Abelian calculations can produce v2{2}, v2{4}, v2{6}, v2{8}
Disagreement with data by factor of 5, but qualitative features match
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K. Dusling et al, Phys. Rev. Lett. 120, 042002 (2018)



CGC results on small systems

New (and somewhat controversial): v2 and v3 for small systems

v3 ordering is wrong
—CGC: p+Au < d+Au < 3He+Au
—Data: p+Au ≈ d+Au < 3He+Au
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M. Mace et al, Phys. Rev. Lett. 121, 052301 (2018)



CGC results on small systems
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v3 ordering is wrong
—CGC: p+Au < d+Au < 3He+Au
—Data: p+Au ≈ d+Au < 3He+Au
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CGC results on small systems

v2 qualitatively right, quantitatively iffy

v3 qualitatively iffy
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M. Mace et al, Phys. Rev. Lett. 121, 052301 (2018)



Brief summary: the CGC strikes back?

CGC calculations now in some quantitative with RHIC data, but that means the LHC data
needs to be revisited

Unclear which further theoretical refinements may be possible (not long ago it was
assumed that odd harmonics were all zero)

vn and multiplicity distribution may provide additional discriminating power
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The first CME results (STAR)

STAR, Phys. Rev. C 81, 054908 (2010)

Strong negative correlation for same sign in both Au+Au and Cu+Cu
Positive correlation of opposite sign for Cu+Cu
—Maybe the medium is small enough to preserve the correlation?
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