Various Aspects of (anti)deuteron Spectra in Au+Au Collisions

Ron Belmont Vanderbilt University PHENIX Collaboration

R. Belmont - Hot Quarks 2008

Outline

- Motivation
- Particle Identification
- Spectra
- Coalescence Parameter and Source Dynamics
- Particle Ratios and Constraints on Neutron Production
- Conclusion

Physics Motivation

- Source dynamics
 - Spectral shapes change with mass due to radial flow
 - Deuteron spectra can be used to infer source radius, complimentary to HBT measurements

- Neutron production
 - Deuterons are produced by coalescence of neutrons and protons, and so can be used to place constraints on neutron production

Particle Identification

2007

TOF

PbS

PHENIX Detector

Central Magnet

PC3

PC2

PbSc

RICH

PC

PbSc

RICH

PbSc

TEC,

- PHENIX Run 7 ٠

 - Au+Au 200 GeV 1.9 out of 5.5 billion events total used for this study
- TOFW ٠
 - 75 ps timing resolution Excellent PID capabilities

Particle Identification and Yield Extraction

- Fit the mass peak Gaussian + ٠
 - exponential for background
- •
- Extract the yield Integrate under the gaussian

p_T Spectra

- 5 centrality classes + MinBias ٠
- p_{T} from 1.1 GeV/c to 4.2 GeV/c (5 GeV/c for MinBias) ٠
- Slope gets flatter with increasing centrality Consistent with radial flow ٠

m_T Spectra

- For central collisions deuteron is flatter than proton due to radial flow
- For peripheral collisions the d and p are have roughly the same slope

Mean p_{T}

- Mean p_T inceases with N_{part} •
- ۲
- Consistent with collective expansion Radial flow velocity increases with centrality Heavier particles get the largest increase of <p_>

Blastwave Fits I

 $1/p_T dN/dp_T = A \int f(x) x dx m_T K_1(m_T \cosh \rho/T_{fo}) I_0(p_T \sinh \rho/T_{fo})$

- All particles are fit individually
- Consistent
 overlap for
 produced
 hadrons
- NO consistent overlap between deuterons and produced hadrons

8/23/2008

R. Belmont - Hot Quarks 2008

Blastwave Fits II

• The fit from the produced particles poorly reproduces the deuteron spectra

Blastwave Fits III

- We use a simultaneous fit to produced hadrons and a separate fit for the deuterons
- These describe the data well, and either a gaussian or box density profile can be used

Coalescence Parameter I

- Defined mathematically as:
 p_d = 2p_p
- Defined conceptually as probability of proton and neutron to coalesce into deuteron
- Depends on momentum and fireball size

$$E_d \frac{d^3 N_d}{dp_d^3} = B_2 \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^2$$

Coalescence Parameter II

- B_2 increases with p_T
 - This is consistent with an expanding source
- B₂ decreases with centrality

Coalescence Parameter III

- B_2 decreases hyperbolically with N_{part} ٠
- Effective volume (~1/B₂) increases linearly with N_{part}
 Bulk particle production also goes as N_{part}
 This implies that freezeout happens at constant particle density •

Coalescence Parameter and Source Radius

- Radius increases linearly vs $N_{part}^{1/3}$
- Good consistency with HBT results

Ratios I

PRL 94 (2005) 122302

- dbar/d is consistent with (pbar/p)²
- This suggests that nbar/n is similar to pbar/p
- dbar/d can be used to calculate deuteron fugacity -> deuteron chemical potential
- Since proton chemical potential is known, neutron chemical potential can be determined and therefore so can nbar/n
- nbar/n = 0.64 +/- 0.04

Ratios II $R_{CP} d and \overline{d}$ $R_{CP} d and \overline{d}$ PHMENIX PHENIX 4.5 4.5 (d+d)/2, <u>0-20%</u> $(d+\overline{d})/2$ HENIX PRELIMINARY ٠ HENIX PRELIMINARY 4 3.5 3.5 3 3 2.5 2.5 2 2 1.5 1.5 0.5 0.5 Run 7 Au+Au√s_{NN}=200 GeV 0 0^Ⅲ 0.5 1.5 3.5 2 2.5 3 1.5 2 2.5 3.5 3 p₁⁴ (GeV/c)

 This measurement constrains the neutron R_{CP} to be similar to that of the proton deuteron p_T divided by 2 to match the proton

$$R_{CP} = \frac{Yield^{central} \bullet N_{coll}^{peripheral}}{N_{coll}^{central} \bullet Yield^{peripheral}}$$

<u>0-20%</u> 60-92%

4 p_ (GeV/c)

Conclusion

- Deuteron spectra ٠
 - This new study has an expanded p_{T} reach and more centrality classes than
 - previous studies at RHIC energies The p_T and m_T spectra are consistent with radial flow
 - Mean p_T vs N_{part} also consistent with radial flow
- Blastwave fits
 - (Anti)deuterons do not freeze out contemporaneously with produced hadrons
- ٠
- Coalescence parameter $_{-}$ Source radius decreases with p_T

 - Source radius increases with N_{part}
 Coalescence probability increases with p_T (expanding source)
 - Effective volume goes as N_{part} (freezeout occurs at common particle density)
- Deuteron ratios •

 - dbar/d shows that nbar/n is similar to pbar/p
 R_{CP} of d+dbar shows that neutron and proton have similar R_{CP}

BACKUP SLIDES

B₂ vs Collision Energy

- Consistency between 17 GeV, 130 GeV, and 200 GeV
- Similar freezeout conditions at RHIC and SPS

Ratios I

- dbar/d is consistent with (pbar/p)²
- This measurement suggests that nbar/n is similar to pbar/p

Flow

- Deuteron flow follows NCQ scaling
- This suggests that neutron flow follows NCQ scaling

Blastwave Fits I

- All particles are fit individually
- Consistent
 overlap for
 produced
 hadrons
- NO consistent overlap between deuterons and produced hadrons

8/23/2008

Blastwave Fits I

 $1/p_T dN/dp_T = A \int f(\xi) \xi d\xi m_T K_1(m_T/T_{fo} \cosh \rho) I_0(p_T/T_{fo} \sinh \rho)$

- All particles are fit individually
- Consistent
 overlap for
 produced
 hadrons
- NO consistent overlap between deuterons and produced hadrons

8/23/2008

R. Belmont - Hot Quarks 2008