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Quick outline

Introduction and motivation

Some basics of high energy nuclear physics (“heavy ion physics”)

Small systems

A brief look towards the future...
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The history of the universe

The early universe (few microseconds)
was a quark-gluon plasma (QGP)

The QGP is a system of deconfined
quarks and gluons

We can recreate the QGP in the lab in
collisions of nuclei at relativistic energies

Goal of high energy nuclear physics:
create, identify, and study the QGP
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Connections to other fields and reasons for general interest

Key questions that are broadly applicable in physics

At what scale do emergent phenomena become measureable?
—E.g. how small of a system can be described by hydrodynamics?

How do emergent phenomena arise?
—E.g. how do we get from the QCD Lagrangian to relativistic hydrodynamics?

How do we understand collective motion of strongly coupled systems?
—QGP, superconductors, topological materials, degenerate fermi gases, etc.
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Connections to other fields and reasons for general interest

Cosmology and astrophysics

Early universe was a QGP

Light nucleus formation in collisions may be related to big bang nucleosynthesis

Lots of cross-talk between neutron star astrophysics and high energy nuclear physics
—Connection between neutron star equation of state and QGP equation of state
—Neutron star mergers: truly gigantic nuclear collisions
—Quark stars: stars with QGP at center

Particle physics and fundamental symmetries

High energy nuclear collisions can be used to search for P- and CP-violation in QCD
—Distinct from but related to searches for neutron EDM

Many applications of string theory (especially AdS/CFT) in theoretical calculations
—E.g. the KSS-bound for the viscosity to entropy density ratio of the QGP
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Typical sizes and scales for heavy ion physics

Mass of proton = 938.3 MeV = 1.007 amu = 1.673× 10−27 kg

Typical energy = 1 GeV = 1.602× 10−10 J

Typical momentum = 1 GeV = 5.344× 10−19 kg m/s

Typical size = 1 fm = 10−15 m

Typical time = 1 fm = 3.336× 10−24 s
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The quark-gluon plasma is the most extreme matter in the known universe
Exact calculations are complex, but my General Physics and Stat Mech students can make
good estimates of certain quantities

Hottest temperature in the known universe: about 105 times hotter than typical
astrophysical temperatures (e.g. center of sun ∼ 107 K)

T ∼ ΛQCD

kB
= 200 MeV = 2.3× 1012 K

Highest pressure in the known universe: about 1029 atmospheres; about 1022 times higher
than bulk modulus of diamond (440 GPa); about 1018 times higher than typical
astrophysical pressure (e.g. center of sun ∼ 1016 Pa)

P ∼
Λ4
QCD

(~c)3
= (200 MeV)4 = 3.2× 1034 Pa

Largest magnetic field in known universe: about 1019 to 1021 times Earth’s magnetic field;
103 to 105 times larger than the field of magnetars

B ∼ γcµ0e

4πr2
= 4.8× 1014 T (RHIC), 1.4× 1016 T (LHC)
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QCD as explained by approximate analogy to QED

QED QCD
electric charge ↔ color charge coupling

electrons ↔ quarks matter fermions

photons ↔ gluons exchange bosons

atoms ↔ nucleons (stable) bound states

molecules ↔ nuclei compound states

One kind of electric charge, three kinds of color charge

Photons do not have electric charge, gluons do have color charge

Only one photon, eight different gluons
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QCD bound states

Baryon Meson

Color-charged particles (quarks and gluons) are generically called partons
QCD bound states are generically called hadrons, divided into baryons and mesons
All observables must be in color singlet state—no partons can be found in isolation in nature
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QCD bound states

Antibaryon Antimeson

Color-charged particles (quarks and gluons) are generically called partons
QCD bound states are generically called hadrons, divided into baryons and mesons
All observables must be in color singlet state—no partons can be found in isolation in nature
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Phases of QCD matter

Lattice QCD predicts a phase transition from nuclear matter to QGP

Large increase energy density at TC ≈ 155 MeV due to large increase in number of
degrees of freedom
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F. Karsch, Lect. Notes Phys. 583, 209-249 (2002)

εSB = g
π2

30
T 4

Below TC : g = 3
3 pions with spin 0

Above TC : g = 37
8 gluons with spin 1,
2 (anti)quarks with spin 1/2



Phases of QCD matter

The QED potential

V (r) = −αEM

r

The QCD potential for qq̄

V (r) = −4

3

αS

r
+ kr

Coulomb part and confining part

The confining part of gets weaker with increasing temperature

More or less gone at the critical temperature (TC ≈ 155 MeV)
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F. Karsch, Lect. Notes Phys. 583, 209-249 (2002)



Intermission

Basics of high energy nuclear collisions
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The Relativistic Heavy Ion Collider
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The Relativistic Heavy Ion Collider

RHIC is the only polarized proton collider in the world (Cold QCD)

RHIC is one of two heavy ion colliders in the world (Hot QCD)

Collision Species Collision Energies (GeV)
p↑+p↑ 510, 500, 200, 62.4
p+Al 200
p+Au 200
d+Au 200, 62.4, 39, 19.6
3He+Au 200
Cu+Cu 200, 62.4, 22.5
Cu+Au 200
Ru+Ru 200
Zr+Zr 200
Au+Au 200, 130, 62.4, 56, 39, 27, 19.6, 15, 11.5, 7.7, 5, ...
U+U 193

And more to come!
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Centrality

Central (lower percentile)

Peripheral (higher percentile)

Central collisions: more overlap means more participating nucleons (Npart)
—Larger volume, longer lifetime

Peripheral collisions: less overlap means fewer participating nucleons
—Smaller volume, shorter lifetime
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Standard model of heavy ion physics

Based on developments in hydro theory over the last few years, we might replace
“thermalization” with “hydrodynamization”
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Azimuthal anisotropy measurements

x,	ψRP

y

dN

dϕ
∝ 1 +

∞∑
n=1

2vn cos nϕ vn = 〈cos nϕ〉 εn =

√
〈rn cos nϕ〉+ 〈rn sin nϕ〉

〈rn〉

Hydrodynamics translates initial shape (including fluctuations) into final state distribution
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Azimuthal anisotropy measurements

Higher	
pressure	
gradient

Lower	pressure	gradient

dN

dϕ
∝ 1 +

∞∑
n=1

2vn cos nϕ vn = 〈cos nϕ〉 εn =

√
〈rn cos nϕ〉+ 〈rn sin nϕ〉

〈rn〉

Hydrodynamics translates initial shape (including fluctuations) into final state distribution

R. Belmont, UNCG ECU Colloquium, 15 March 2024 - Slide 17



Important discovery in 2005
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PHOBOS Plenary, Quark Matter 2005 (see also Phys.Rev.C 77, 014906 (2008))

A nucleus isn’t just a sphere
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Important discovery in 2005
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R. Andrade et al, Eur. Phys. J. A 29, 23-26 (2006)

Worth noting that lumpy initial conditions were predicted some time in 2003



Important discovery in 2010
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Nucleon fluctuations can produce
non-zero εn for odd n

Symmetry planes ψn can be
different for different harmonics

ϕ = φlab − ψn

Alver and Roland, Phys. Rev. C 81, 054905 (2010)



Data and theory for vn

dN

dϕ
∝ 2v1 cosϕ+ 2v2 cos 2ϕ+ 2v3 cos 3ϕ+ 2v4 cos 4ϕ+ 2v5 cos 5ϕ
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Gale et al, Phys. Rev. Lett. 110, 012302 (2013)



Fluctuations in large systems
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Fluctuations should also be
translated, so measure σv2/〈v2〉

|η| < 1

Generally good agreement with
models of initial geometry

PHOBOS, Phys. Rev. C 81, 034915 (2010)



Fluctuations in large systems

Centrality (%)
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Fluctuations should also be
translated, so measure σv2/〈v2〉

1 < |η| < 3

Central: breakdown of
small-variance limit (assumed in
data and solid line)

Peripheral: non-linearity in hydro

response (e.g. J. Noronha-Hostler et

al Phys. Rev. C 93, 014909 (2016))

PHENIX (RB), Phys. Rev. C 99, 024903 (2019)



Geometry engineering and nuclear structure

R. Belmont, UNCG ECU Colloquium, 15 March 2024 - Slide 23

STAR, Phys. Rev. C 105, 014901 (2022)

Exquisite new data from STAR shows percent-level
sensitivity to nuclear structure

J. Jia, Phys. Rev. C 105, 044905 (2022) proposes to
use flow and nuclear structure to inform each other



Intermission

Small systems
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A brief history of heavy ion physics

1980s and 1990s—AGS and SPS... QGP at SPS!

Early 2000s—QGP at RHIC! No QGP at SPS. d+Au as control.

Mid-late 2000s—Detailed, quantitative studies of strongly coupled QGP. d+Au as control.

2010—Ridge in high multiplicity p+p (LHC)! Probably CGC!

Early 2010s—QGP in p+Pb!

Early 2010s—QGP in d+Au!

Mid 2010s to present—QGP almost everywhere

“Twenty years ago, the challenge in heavy ion physics was to find the QGP. Now, the challenge
is to not find it.” —Jürgen Schukraft, QM17
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The ridge is a signature of flow

Extended structure away from near-side jet peak interpreted as collective effect due to presence of QGP

Discovered by STAR in Au+Au in 2004 (PRC 73, 064907 (2006) and PRL 95, 152301 (2005))
Realized by STAR to be flow in 2009 (PRL 105, 022301 (2010))
First found in small systems by CMS (JHEP 1009, 091 (2010) and PLB 718, 795 (2013))
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STAR, PRC 73, 064907 (2006) CMS, JHEP 1009, 091 (2010) CMS, PLB 718, 795 (2013)



First results at RHIC

Right around the same time as the p+Pb ridge:
—First paper measuring v2 in d+Au at RHIC
—Measurement of baryon enhancement in d+Au

(RB PhD thesis)
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PHENIX (RB), Phys. Rev. C 88, 024906 (2013) PHENIX, Phys. Rev. Lett. 111, 212301 (2013)



Intermission

Small systems geometry scan
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Small systems geometry scan

Collective motion translates initial geometry into final state distributions

To determine whether small systems exhibit collectivity, we can adjust the geometry and
compare across systems

We can also test predictions of hydrodynamics with a QGP phase
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Small systems geometry scan
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Small systems geometry scan
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PHENIX (RB), Nat. Phys. 15, 214–220 (2019)



Small systems geometry scan
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v2 and v3 ordering matches ε2 and ε3 ordering in all three systems
—Collective motion of system translates the initial geometry into the final state
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PHENIX (RB), Nat. Phys. 15, 214–220 (2019)
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Small systems geometry scan
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v2 and v3 vs pT predicted or described very well by hydrodynamics in all three systems
—All predicted (except v2 in d+Au) in J.L. Nagle et al, PRL 113, 112301 (2014)
—v3 in p+Au and d+Au predicted in C. Shen et al, PRC 95, 014906 (2017)
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PHENIX (RB), Nat. Phys. 15, 214–220 (2019)

p+Au d+Au 3He+Au



Can initial state effects explain the data?
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K. Dusling and R. Venugopalan, Phys. Rev. D 87, 094034 (2013)

CGC framework: glasma diagrams produce
angular correlations like the ridge and vn
purely from initial state correlations, with no
need for final state interactions (hydro)

Can they explain the data?



Initial state effects cannot explain the data
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Initial state effects (CGC/Glasma) alone do not describe the data
—M. Mace et al, Phys. Rev. Lett. 123, 039901 (Erratum) (2019)
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PHENIX (RB), Nat. Phys. 15, 214–220 (2019)
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How important are initial state effects?

Initial state effects important for theory, but make little contribution for central collisions

Overestimation of data assumed to be related to fluid choice parameters and/or
longitudinal dynamics
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B. Schenke et al, Phys. Lett. B 803, 135322 (2020)

p+Au d+Au 3He+Au



How important are initial state effects?

For central p+Au, modest correlation between εp and v2

For central d+Au and 3He+Au, no correlation between εp and v2
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B. Schenke et al, Phys. Lett. B 803, 135322 (2020)



How important are initial state effects?

The CGC/Glasma correlations appear to be too narrow in (pseudo)rapidity to have any
significant impact on the data
—The PHENIX data are measured with three detectors spanning −3.9 < η < +0.35

We’ll talk more about the importance of the pseudorapidity acceptance of experiments
soon
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B. Schenke et al, Phys. Rev. D 105, 094023 (2022)



Comparisons with STAR
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STAR, Phys. Rev. Lett. 130, 242301 (2023)

Good agreement between STAR and
PHENIX for v2

Large difference between STAR and
PHENIX for v3 in p+Au and d+Au

Large subnucleonic fluctuations can
overwhelm the intrinsic geometry in
some models, leading to similar ε3 for
all systems
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PHENIX data update
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PHENIX (RB), Phys. Rev. C 105, 024901 (2022)
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PHENIX has completed a new analysis confirming the results published in Nature Physics

All new analysis using two-particle correlations with event mixing instead of event plane method
—Completely new and separate code base
—Very different sensitivity to key experimental effects (beam position, detector alignment)

It’s essential to understand the two experiments have very different acceptance in pseudorapidity
—STAR-PHENIX difference actually reveals interesting physics



PHENIX data update
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PHENIX (RB), Phys. Rev. C 105, 024901 (2022)
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All new analysis using two-particle correlations with event mixing instead of event plane method
—Completely new and separate code base
—Very different sensitivity to key experimental effects (beam position, detector alignment)

It’s essential to understand the two experiments have very different acceptance in pseudorapidity
—STAR-PHENIX difference actually reveals interesting physics
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PHENIX has completed a new analysis confirming the results published in Nature Physics

All new analysis using two-particle correlations with event mixing instead of event plane method
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STAR and PHENIX detector comparison

The PHENIX Nature Physics paper uses the BBCS-FVTXS-CNT detector combination
—This is very different from the STAR analysis (TPC only)

We can try to use FVTXS-CNT-FVTXN detector combination to better match STAR
—Closer, and “balanced” between forward and backward, but still different
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Good agreement with STAR for v2
—Similar physics for the two different pseudorapidity acceptances

Strikingly different results for v3
—Rather different physics for the two different pseudorapidity acceptances
—Longitudinal effects apparently much stronger for v3 than v2
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—Similar physics for the two different pseudorapidity acceptances

Strikingly different results for v3
—Rather different physics for the two different pseudorapidity acceptances
—Longitudinal effects apparently much stronger for v3 than v2
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Good agreement with STAR for v2
—Similar physics for the two different pseudorapidity acceptances

Strikingly different results for v3
—Rather different physics for the two different pseudorapidity acceptances
—Longitudinal effects apparently much stronger for v3 than v2



Pseudorapidity dependence in small systems
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The likely much stronger pseudorapidity dependence of v3 compared to v2 is an essential
ingredient in understanding different measurements
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J.L. Nagle et al (RB), Phys. Rev. C 105, 024906 (2022)



Pseudorapidity dependence in small systems

Flow vectors become decorrelated with increasing pseudorapidity separation
—The effect is much stronger for v3 than for v2

The hierarchy of the measured vn depends on that of the geometry and decorrelations
—Interesting that the decorrelation hierarchy matches that of the geometry...
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W. Zhao et al, Phys. Rev. C 107, 014904 (2023)



Pseudorapidity dependence in small systems

Flow decorrelations lead to larger v3 for STAR, explaining ∼50% of the difference between
the experiments in this particular model
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Pseudorapidity dependence in small systems
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B. Schenke et al, Phys. Rev. D 105, 094023 (2022)

Intrinsic geometry likely
persists over all
pseudorapidity ranges

Fluctuations in the
geometry vary as a
function of rapidity (p
from a p+Pb collision
shown)

PHENIX data follow
intrinsic geometry, STAR
data follow subnucleonic
fluctuations



Brief Summary

Long established role of geometry and hydrodynamics in large systems

Role of geometry and hydrodynamics in small systems also now established

Understanding the pseudorapidity dependence is an essential part of understanding the
overall dynamics
—Longitudinal decorrelation leads to major differences between measurements
—The intrinsic geometry likely persists over long ranges in pseudorapidity
—Fluctuations in the geometry vary over pseudorapidity

Initial state effects, though important from a theoretical standpoint, have minimal impact
on the measured vn
—This is in part due to their rather small range in pseudorapidity

We’ve learned a lot from 2+1D hydro, but we have ever-increasing need for 3+1D hydro
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The future
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The future

Unfortunately, UNCG has decided there is no future
—Astronomy courses discontinued starting Fall 2024
—Program and department to be dissolved by the end of Spring 2029 (or sooner)
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The future

Academic Portfolio Review is a tool—like any tool it is not inherently good or bad; it can
be used for good or bad aims

The UNCG administration has used APR to make destructive curriculum changes (and
violated numerous principles of shared governance in the course of doing so)

No explanations or justifications have been given for any program discontinuations,
including a strong Anthropology department and a thriving Computational Math PhD
program

Despite numerous claims of budget and enrollment issues, no financial analysis justifying
the cuts has been given, and program discontinuations often lead to further enrollment
decline

The Math & Stats department has produced a detailed review, indicating huge losses

Astronomy courses bring in $1 million in revenue per academic year, which fully covers the
cost of our department; they also fulfill key general education requirements for non-science
majors, and there isn’t infinite capacity to just shift those students around

R. Belmont, UNCG ECU Colloquium, 15 March 2024 - Slide 50

https://sites.google.com/view/math-uncg/home
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The future

There’s bad news and good news

Academic Portfolio Review is going to become a permanent fixture in the UNC system, and
it will not be used for good

But you—we—can fight back when they try to hurt our universities

Donors have the biggest impact; votes of no confidence and negative press coverage can be
very helpful

Some friendly suggestions for you to consider

Read local news, especially alts, and become familiar certain reporters and their work—they
can be great allies

Pay careful attention to administrative actions, especially regarding faculty contracts and
curriculum changes; take and keep notes for yourself

Join your local AAUP chapter, it’s cheap ($20/yr at UNCG), it’s fun, it’s people you know
and care about
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Understanding the nonflow contribution: v2 in p+Au as a case study
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The large difference between the
PHENIX published and STAR
preliminary in this case is nonflow

PHENIX suppresses nonflow via
kinematic selection

STAR applies non-flow subtraction
procedure

One needs to be careful about the
risk of over-subtraction
methods—S. Lim, et al (RB),
Phys. Rev. C 100, 024908 (2019)
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Considerable improvement in
nonflow subtraction in STAR 2019
preliminary, reasonable agreement
with PHENIX



Additional non-flow studies using published data tables

To enable additional study, the new PHENIX (RB) publication (arXiv:2017.06634, sub’d to
PRC) includes the complete set of ∆φ correlations and extracted coefficients c1, c2, c3, c4

A new paper uses these data tables to explore non-flow subtraction of these data as well
as to assess the degree of (non-)closure of non-flow subtraction methods
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Additional non-flow studies using published data tables
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The BBCS-FVTXS-CNT combination minimizes non-flow, so subtraction doesn’t make too much
difference

The FVTXS-CNT-FVTXN combination has more non-flow, and the subtraction does much more
That the three different combinations all line up after non-flow subtraction seems to lend some
credence thereto, but one must be careful...
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The BBCS-FVTXS-CNT combination minimizes non-flow, so subtraction doesn’t make too much
difference
The FVTXS-CNT-FVTXN combination has more non-flow, and the subtraction does much more
That the three different combinations all line up after non-flow subtraction seems to lend some
credence thereto, but one must be careful...
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Additional non-flow studies using published data tables
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There’s a larger relative change for v3 compared to v2, but the smaller value of v3 makes the non-flow
subtraction more sensitive to non-closure

For the combinations with more non-flow, where the v3 is imaginary in p+Au and d+Au, the non-flow
subtraction is completely uncontrolled
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Additional non-flow studies using published data tables
0 0.5 1 1.5 2 2.5 3

 [GeV]
T

p

0

0.05

0.1

0.15

0.2

0.252v PHENIX p+Au 0-5%
BBCS-FVTXS-CNT
PHENIX p+Au 0-5%

FVTXS-CNT-FVTXN

PHENIX p+Au 0-5%

BBCS-CNT-FVTXN

0 0.5 1 1.5 2 2.5 3
 [GeV]

T
p

0

0.05

0.1

0.15

0.2

0.252v PHENIX d+Au 0-5%PHENIX d+Au 0-5%PHENIX d+Au 0-5%

0 0.5 1 1.5 2 2.5 3
 [GeV]

T
p

0

0.05

0.1

0.15

0.2

0.252v He+Au 0-5%3PHENIX 
Raw
Template Applied
He+Au Fit Result3

He+Au 0-5%3PHENIX He+Au 0-5%3PHENIX 

0 0.5 1 1.5 2 2.5 3
 [GeV]

T
p

0.1−

0.08−

0.06−

0.04−

0.02−

0

0.02

0.04

0.06

0.08

0.13v

PHENIX p+Au 0-5%PHENIX p+Au 0-5%PHENIX p+Au 0-5%

0 0.5 1 1.5 2 2.5 3
 [GeV]

T
p

0.1−

0.08−

0.06−

0.04−

0.02−

0

0.02

0.04

0.06

0.08

0.13v

PHENIX d+Au 0-5%PHENIX d+Au 0-5%PHENIX d+Au 0-5%

0 0.5 1 1.5 2 2.5 3
 [GeV]

T
p

0.1−

0.08−

0.06−

0.04−

0.02−

0

0.02

0.04

0.06

0.08

0.13v

He+Au 0-5%3PHENIX He+Au 0-5%3PHENIX He+Au 0-5%3PHENIX 

There’s a larger relative change for v3 compared to v2, but the smaller value of v3 makes the non-flow
subtraction more sensitive to non-closure
For the combinations with more non-flow, where the v3 is imaginary in p+Au and d+Au, the non-flow
subtraction is completely uncontrolled
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Additional non-flow studies using published data tables
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There’s a larger relative change for v3 compared to v2, but the smaller value of v3 makes the non-flow
subtraction more sensitive to non-closure
For the combinations with more non-flow, where the v3 is imaginary in p+Au and d+Au, the non-flow
subtraction is completely uncontrolled
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Additional non-flow studies using published data tables
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Closure is considerably violated in AMPT

and PYTHIA/Angantyr

Since AMPT has too much non-flow and PYTHIA doesn’t have any flow, the degree of
overcorrection in real data is likely not as bad as it is with these generators
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Additional non-flow studies using published data tables
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Closure is considerably violated in AMPT and PYTHIA/Angantyr

Since AMPT has too much non-flow and PYTHIA doesn’t have any flow, the degree of
overcorrection in real data is likely not as bad as it is with these generators
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Additional non-flow studies using published data tables
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Closure is considerably violated in AMPT and PYTHIA/Angantyr

Since AMPT has too much non-flow and PYTHIA doesn’t have any flow, the degree of
overcorrection in real data is likely not as bad as it is with these generators
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Additional non-flow studies using published data tables
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The standard PHENIX v3/v2 is lower than the ATLAS, while the non-flow corrected is above

The ratio is expected to be lower for lower collision energies in almost all physics scenarios
—Lower energy, shorter lifetime, more damping of higher harmonics
The STAR v3/v2 is very similar to the non-flow corrected PHENIX ratio
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Additional non-flow studies using published data tables
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The standard PHENIX v3/v2 is lower than the ATLAS, while the non-flow corrected is above
The ratio is expected to be lower for lower collision energies in almost all physics scenarios
—Lower energy, shorter lifetime, more damping of higher harmonics

The STAR v3/v2 is very similar to the non-flow corrected PHENIX ratio
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Additional non-flow studies using published data tables
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Additional non-flow studies using published data tables
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Since the template method over-corrects the raw BBCS-FVTXS-CNT v3, the truth is
likely in between

A firm understanding of this could shed a lot of light on various physics scenarios...
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Extremely small systems
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Intermission

Can we turn the QGP off?

Let’s have a look at
extremely small systems
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Extremely small systems in AMPT
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A single color string (e++e− collisions) shows no sign of collectivity

Two color strings shows collectivity
—In AMPT, p+p has two strings and p/d/3He+Au have more
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Extremely small systems at LEP

No apparent collectivity in ALEPH e++e− data

Brought up as a possibility in e.g. P. Romatschke, EPJC 77, 21 (2017)

Not expected in parton escape picture (see previous slide)

Not expected (below
√
s ≈ 7 TeV) in e.g. P. Castorina et al, EPJA 57, 111 (2021)
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Badea et al, Phys. Rev. Lett. 123, 212002 (2019)



Extremely small systems at HERA and the EIC
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Abt et al, JHEP 04, 070 (2020)

“The correlations observed here do not indicate the
kind of collective behaviour recently observed at the
highest RHIC and LHC energies in high-multiplicity
hadronic collisions.”

No collectivity in e+p collisions at HERA →
Not likely to find collectivity in e+p collisions at EIC
But what about e+A collisions?

Considerable interest in this topic within EIC
community (see talks by R. Milner, E. Ferreiro,
others...)



Extremely small systems at the LHC

Observation of collectivity in photonuclear collisions
Collective picture: photon fluctuates into a vector meson (e.g. ρ), not so different from p+Pb
Initial state picture: CGC calculation in good agreement, further investigation needed
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Intermission

Pseudorapidity dependence in small systems as a prelude to the geometry scan
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Pseudorapidity dependence in small systems
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PHENIX (RB), Phys. Rev. Lett. 121, 222301 (2018)

p+Al, p+Au, d+Au, 3He+Au

Good agreement with wounded quark model
(M. Barej et al, Phys. Rev. C 97, 034901 (2018))

Good agreement with 3D hydro
(P. Bozek et al, Phys. Lett. B 739, 308 (2014))



Pseudorapidity dependence in small systems

v2 vs η in p+Al, p+Au, d+Au, and 3He+Au

Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))
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p+Al p+Au d+Au 3He+Au



Pseudorapidity dependence in small systems

v2 vs η in p+Al, p+Au, d+Au, and 3He+Au

Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))

Prevalence of nonflow near the EP detector (−3.9 < η < −3.1)
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Pseudorapidity dependence in small systems

v2 vs η in p+Al, p+Au, d+Au, and 3He+Au

Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))

Prevalence of nonflow near the EP detector (−3.9 < η < −3.1)
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Pseudorapidity dependence in small systems

It would be nice to know v3(η), but very hard to measure
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Pseudorapidity dependence in small systems
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Pseudorapidity dependence in small systems
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p+Al, p+Au, d+Au, 3He+Au

Good agreement with wounded quark model
(M. Barej et al, Phys. Rev. C 97, 034901 (2018))

Good agreement with 3D hydro
(P. Bozek et al, Phys. Lett. B 739, 308 (2014))



Pseudorapidity dependence in small systems
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Pseudorapidity dependence in small systems

It would be nice to know v3(η), but very hard to measure
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Pseudorapidity dependence in small systems
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The likely much stronger rapidity dependence of v3 compared to v2 is an essential
ingredient in understanding different measurements
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Small systems geometry scan
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How important are initial state effects?

For central p+Au, modest correlation between εp and v2 but fairly strong correlation
between ψp

2 and ψv2
2

For central d+Au and 3He+Au, no correlation between εp and v2, modest correlation
between ψp

2 and ψv2
2
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B. Schenke et al, Phys. Lett. B 803, 135322 (2020)
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Event characterization
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Centrality
b (impact parameter)—separation between the centers of the two nuclei
Npart—number of nucleons in the overlap region
Ncoll—number of nucleon-nucleon collisions

Centrality 〈Ncoll〉 〈Npart〉
Au+Au
0-10% 960.2 325.8

10-20% 609.5 236.1
20-40% 300.8 141.5
40-60% 94.2 61.6
60-92% 14.8 14.7

d+Au
0-20% 15.1 15.3

20-40% 10.2 11.1
0-100% 7.6 8.5
40-60% 6.6 7.8
60-88% 3.1 4.3

p+p ≡ 1 ≡ 2
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Multiparticle correlations
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Components and cumulants in p+Au and d+Au at 200 GeV
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Positive c2{4} in p+Au doesn’t seem
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Cumulants in p+Au and d+Au at 200 GeV

R. Belmont, UNCG ECU Colloquium, 15 March 2024 - Slide 81

B. Schenke et al, Phys. Lett. B 803, 135322 (2020)

Cumulants are computationally expensive
in hydro theory, so not as well-studied

This particular calculation doesn’t show
the strong geometry dependence seen
in the data

Important to note this is 2+1D hydro,
so the kinematics can’t match the data



p+p collisions at the LHC

Hydro does a good job of vn{2}...

...but hydro cannot even get the correct sign of c2{4}
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Weller & Romatschke, PLB 774, 351 (2017)

W. Zhao et al, PLB 780, 495 (2018)



p+p collisions at the LHC

Hydro does a good job of vn{2}...
...but hydro cannot even get the correct sign of c2{4}
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Weller & Romatschke, PLB 774, 351 (2017) W. Zhao et al, PLB 780, 495 (2018)
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Initial eccentricities
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Initial eccentricities

Nagle et al: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.112301

Welsh et al: https://journals.aps.org/prc/abstract/10.1103/PhysRevC.94.024919

IP-Glasma run by S. Lim using publicly available code (thanks to B. Schenke)
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Table compiled by J.L. Nagle

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.112301
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.94.024919
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Small systems beam energy scan
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Testing hydro by controlling system size and life time

t = 3 fm/c

t = 2 fm/c 200 GeV

62 GeV
20 GeV7.7 GeV

5.02 TeV

J.D. Orjuela Koop et al (RB)
Phys. Rev. C 93, 044910 (2016)

Spacetime volume
in QGP phase

R. Belmont, UNCG ECU Colloquium, 15 March 2024 - Slide 86

Geometry in d+Au collisions dominated by
deuteron shape, thus largely independent of
collision energy

Spacetime volume of system in QGP phase
decreases with decreasing collision energy



d+Au beam energy scan
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Hydro theory agrees with higher energies very well, underpredicts lower energies

Likely need different EOS for lower energies; influence of conserved charges likely more
important at lower energies (see e.g. J. Noronha-Hostler et al, 1911.10272, 1911.12454)

Nonflow likelier to be an issue due to lower multiplicity at lower energies
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200 GeV 62.4 GeV 39 GeV 19.6 GeV

PHENIX (RB), Phys. Rev. C 96, 064905 (2017)



d+Au beam energy scan
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Measurement of v2{6} in d+Au at 200 GeV and v2{4} in d+Au at all energies

Multiparticle correlations can be a good indicator of collectivity, but beware caveats
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Testing hydro by controlling system geometry
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A marquee result of the RHIC program

Major interest in and out of field—174 citations



Testing hydro by controlling system geometry
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Testing hydro by controlling system geometry
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v2 and v3 ordering matches ε2 and ε3 ordering in all three systems
—Collective motion of system translates the initial geometry into the final state
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Testing hydro by controlling system geometry
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v2 and v3 vs pT predicted or described very well by hydrodynamics in all three systems
—All predicted (except v2 in d+Au) in J.L. Nagle et al, PRL 113, 112301 (2014)
—v3 in p+Au and d+Au predicted in C. Shen et al, PRC 95, 014906 (2017)
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Initial state effects alone do not describe the data
—Phys. Rev. Lett. 123, 039901 (Erratum) (2019)
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Testing hydro by controlling system geometry

Inclusion of initial state effects is important, but not a big contribution for central collisions
—B. Schenke et al, Phys. Lett. B 803, 135322 (2020)
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PHENIX data update
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PHENIX (RB), arXiv:2107.06634 (accepted by Phys. Rev. C)
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PHENIX has completed a new analysis confirming the results published in Nature Physics

All new analysis using two-particle correlations with event mixing instead of event plane method
—Completely new and separate code base
—Very different sensitivity to key experimental effects (beam position, detector alignment)

It’s essential to understand the two experiments have very different detector acceptances
—STAR-PHENIX discrepancy may actually reveal interesting physics
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STAR and PHENIX detector comparison

The PHENIX Nature Physics paper uses the BBCS-FVTXS-CNT detector combination
—Very different kinematic acceptance compared to STAR

We can try to use FVTXS-CNT-FVTXN detector combination to better match STAR
—Closer, and “balanced” between forward and backward
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Good agreement with STAR for v2
—Similar physics for the two different pseudorapidity acceptances

Strikingly different results for v3
—Rather different physics for the two different pseudorapidity acceptances
—Longitudinal effects much stronger for v3 than v2
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Longitudinal dynamics in small systems
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The likely much stronger pseudorapidity dependence of v3 compared to v2 is an essential
ingredient in understanding different measurements
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Additional non-flow studies using published data tables
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v3/v2 expected be lower for lower collision energy due to shorter lifetime
—STAR data may have unphysically large v3/v2

Application of “non-flow subtraction” to remove contamination can lead to significant
over-correction; see also S. Lim, et al (RB), Phys. Rev. C 100, 024908 (2019)
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sPHENIX: QGP microscope

From the 2015 DOE Nuclear Physics
Long Range Plan: [The goal is to]
probe the inner workings of QGP by
resolving its properties at shorter and
shorter length scales.... essential to
this goal... is a state-of-the-art jet
detector at RHIC, called sPHENIX.
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sPHENIX: QGP microscope

Resolving power d ∝ λ
de Broglie wavelength λ = h/p
p λ
2.5 eV 500 nm
100 keV 12 pm
200 MeV 6.2 fm
1 GeV 1.2 fm
10 GeV 0.12 fm
50 GeV 0.025 fm
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sPHENIX: timeline

Past and present

Magnet purchase July 2013

Magnet delivery April 2015

DOE OPA CD-0 September 2016

Order for Outer HCal steel March 2018

DOE OPA CD-1/CD-3a August 2018

DOE OPA PD-2/PD-3 Review May 2019

Authorization for PD-2/PD-3 September 2019

Fabrication orders September 2019 (ongoing)

Assembly and installation begins April 2021 (ongoing)

Future

Completion of assembly and installation, initial commissioning September 2022

First collisions January 2023
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sPHENIX: magnet
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sPHENIX: beam tests
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sPHENIX: beam tests
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sPHENIX: event plane detector as day one “upgrade”
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Lots of core sPHENIX measurements need flow expertise

RB co-I on NSF MRI for event plane detector
—Funds disbursed August 2021, construction ongoing (at Lehigh U)
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sPHENIX: projections
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Multi-particle correlations are very sensitive to the underlying distribution

Heavy quark flow provides major insights into transport coefficients
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