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What is parity?

@ In 3 space dimensions, parity is the simultaneous inversion of all three dimensions

X —X
Ply| =1~y
z —Z

Scalar quantities (e.g. mass, charge) are P-even

Vector quantities (e.g. momentum, electric field) are P-odd

o Pseudo-vector quantities (e.g. angular momentum, magnetic field) are P-even

[=FPxp — L=-Fx-p
o Parity was long believed to be conserved in all laws of physics
o However...
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Parity violation (weak interactions)
o Proposed by T.D. Lee and C.N. Yang, Phys. Rev. 104, 254 (1956)
o Discovered by C.S. Wu et. al., Phys. Rev. 105, 1314 (1957)

Mirror plane
Original Mirror-reversed
arrangement arrangement
Predicted direction
Preferred direction of beta emission if
of beta ray emision parity were conserved

=D Cobalt-60 @&
nuclei

A

Observed direction
Direction of electron of beta emission in

flow through the mirror-reversed
solenoid coils ‘ ‘ arrangement

o Electron emission from °Co — Ni + e + T, was found to be anti-parallel to
the nuclear spin—parity violation

o Pauli was shocked and refused to believe the results, insisting they be repeated

o Wu's experiment was repeatedly confirmed, and she should have gotten the
Nobel Prize in physics, as Lee and Yang did...
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Chirality

What is chirality?
o Chirality is an internal quantum number, equal to —1(L) or +1(R)

o For massless particles it is equal to helicity (5- ), for massive particles it is
different

Chirality is a Lorentz invariant, while helicity is not for massive particles

Helicity and chirality are P-odd, meaning they change sign under parity
transformation

@ Any state can be written as the sum of the left and right components, i.e.
Y =vYr+YL

@ The chirality operator is the Dirac gamma matrix 4> and has eigenvalues of +1
VYr =+Yr, VY=Y, YUr=—Yr, U=+,

@ The chiral projection operators can be constructed from ~°
PrL=1(1+7%)
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Chirality

A brief word on notation and terminology

Typically any vector quantity can be written as the sum of the chiral quantities
The vector current is the sum of left- and right-handed current
B e o
Jy=Jp +J;
Typically any axial quantity can be written as the difference of the chiral
quantities
The axial current is the difference of left- and right-handed current
JH — JH _ JH
A “R L
The same is also true with chemical potentials, number densities, etc.
ny =ng+nL, Npa=nr—ng
Because of the connection to the Dirac gamma matrix +°, axial quantities are

sometimes denoted with a 5
Iy JE
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Topological charge and the U(1)4 anomaly
The QCD vacuum is highly non-trivial!
U(1)a anomaly:
I g2 a [Fuv
Opdy = @F‘WFQ

Topological charge:

g’ z
Qu / d*x F3 FI € Z

Energy of
gluon field &
) /4
0% o
(X) (
RXSREREK "‘"‘0’0 85
0 XS XBSXLAE 4
ANRAY SRR ".“!:—';"\“o‘:’:',;o"‘ 50N
W O Y ",
& RO OAS ! .0’0, o2 ’0 (X)
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2 DRSNS
~1 WY
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e Qv =N —Ng
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Topological charge and the U(1)4 anomaly

The QCD vacuum is highly non-trivial!
U(1)a anomaly:
I g2 a [Fuv
Opdy = @F‘“,Fa
Topological charge:

g’ z
Qu / d*x F3 FI € Z

3272
Energy of
gluon field &
e let
“‘ )
S pofuosy X0 AKX
A T %025, OO .. o0y
CPOPOSESX X 2
ORI
~ oS o
2 R
g "Q:O

° Quw =N, — Ng

o Topological charge is the change in Chern-Simons number (Ncs)

o Instanton: tunneling through barrier (all energies/temperatures, including 0)
o Sphaleron: jumping over barrier (only sufficiently high temperatures/energies)
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A brief history of parity violation in QCD in a few references

o Earliest papers on general features in QFT
T.D. Lee, Phys. Rev. D 8, 1226 (1973)
T.D. Lee and G.C. Wick, Phys. Rev. D 9, 2291 (1974)
P.D. Morley and I.A. Schmidt, Z. Phys. C 26, 627 (1985)

o First paper suggesting local P-violation in QCD
D. Kharzeev, R.D. Pisarski, and M.R.G. Tytgat, Phys. Rev. Lett 81, 512 (1998)

o First paper suggesting an experimental search
D. Kharzeev, Phys. Lett. B 633, 260 (2006) [note: posted to arXiv in 2004]

o First paper suggesting a specific observable
S.A. Voloshin, Phys. Rev. C 70, 057901 (2004)

o First paper invoking the name “chiral magnetic effect”
D.E. Kharzeev, L.D. McLerran and H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

o First experimental papers reporting the CME search
STAR, Phys. Rev. Lett. 103, 251601 (2009)
STAR, Phys. Rev. C 81, 054908 (2010)

o First ALICE paper reporting the CME search
ALICE, Phys. Rev. Lett. 110, 012301 (2013)
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The magnetic field in heavy ion collisions

W.-T. Deng and X.-G. Huang
Phys. Rev. C 85, 044907 (2012)

10 Au+Au
+F N\ V's =200GeV
£ \

5 01
=R R~ A BN, W
< 0001
10'_1.0
100
NEI: 1
@ The spectating nucleons induce a = 001
magnetic field in the overlap region T
o The magnetic field is stronger but v 107
shorter lived at higher energies 10-6

-04 -02 00 02 04
t(fm/c)
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The Chiral Magnetic Effect

o Chiral imbalance induced by quantum anomaly (recall Q, = N; — Ng) leads to
electric current when quark spins are aligned by an external magnetic field
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The Chiral Magnetic Effect

o Chiral imbalance induced by quantum anomaly (recall Q, = N; — Ng) leads to
electric current when quark spins are aligned by an external magnetic field

ECE
T e

RO

3

- Nce -
Jy = B
v 272 HA

@ How to measure?
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The CME correlator

The standard Fourier expansion (Voloshin and Zhang, Z. Phys. C70 (1996) 665-672)

dN

Y x1+2) vacosnAp D= —n, vn=(cosnAg)

n=1

The Fourier expansion including P-odd sine terms

dN

dag ™ 142 [vacosnA¢ + apsinnA¢]  a, = (sin nA¢)

n=1

@ Normally we ignore sine terms, but
now we need them
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The CME correlator

The standard Fourier expansion (Voloshin and Zhang, Z. Phys. C70 (1996) 665-672)

dN

Y x1+2) vacosnAp D= —n, vn=(cosnAg)

n=1

The Fourier expansion including P-odd sine terms

dN
dAg

oo
x1+2) [vacosnA¢ + apsinnA¢]  an = (sin nAg)

n=1

@ Normally we ignore sine terms, but
now we need them

@ Positive particles should go above the
reaction plane a{r >0

ns >0 o Negative particles should go below the
reaction plane a;” <0
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The CME correlator

The standard Fourier expansion (Voloshin and Zhang, Z. Phys. C70 (1996) 665-672)
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Y x1+2) vacosnAp D= —n, vn=(cosnAg)

n=1

The Fourier expansion including P-odd sine terms

dN
dAg

oo
x1+2) [vacosnA¢ + apsinnA¢]  an = (sin nAg)
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@ Normally we ignore sine terms, but
now we need them

@ Positive particles should go above the
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ns >0 o Negative particles should go below the
reaction plane a;” <0
o However...
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The CME correlator

The standard Fourier expansion (Voloshin and Zhang, Z. Phys. C70 (1996) 665-672)

dN

Y x1+2) vacosnAp D= —n, vn=(cosnAg)

n=1

The Fourier expansion including P-odd sine terms

dN
dA¢

oo
x1+2) [vacosnA¢ + apsinnA¢]  an = (sin nAg)

n=1

@ Normally we ignore sine terms, but
now we need them

@ Positive particles should go above the
reaction plane a{r >0

Urp
ns <0 > o Negative particles should go below the
X reaction plane a;” <0
+
Tt o However...
n — o Qu fluctuates about (Qw) = 0, so the
a; <0 a; > 0 CME current changes sign event by

event, and therefore <af[> =0
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The CME correlator

What to do? Measure 2 particle correlation with respect to the reaction plane
(Voloshin, Phys. Rev. C 70 (2004) 057901)

(cos(pa + ¢p — 29prp)) = (cos A¢pacos A¢pp) — (sin Adasin App)
= [(v1,av1,p) + Bin] — [{a1,2a1,6) + Bout]

o Backgrounds uncorrelated with RP cancel

@ Same sign (aitait) >0
ay t o Opposite sign (afaf) <0

l Uf[ Tnp o Directed flow is rapidity-odd, (vivi) =~ 0

@ Optimistically,
(cos(¢a + b — 2¢rpP)) = —(a1,231,p)
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The CME correlator

What to do? Measure 2 particle correlation with respect to the reaction plane
(Voloshin, Phys. Rev. C 70 (2004) 057901)

(cos(pa + ¢p — 29prp)) = (cos A¢pacos A¢pp) — (sin Adasin App)
= [(v1,av1,p) + Bin] — [{a1,2a1,6) + Bout]

o Backgrounds uncorrelated with RP cancel
@ Same sign (aitait) >0

ay t o Opposite sign (afaf) <0
Uf[ Tnp o Directed flow is rapidity-odd, (vivi) =~ 0
' @ Optimistically,
(cos(¢a + b — 2¢rpP)) = —(a1,231,p)
o However...

o RP dependent backgrounds remain

o If dipole fluctuations, (vivi) # 0
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The first CME results

STAR, Phys. Rev. C 81, 054908 (2010)
x10° x10°
= [ T T T I T ] o =g T I I L T B
PR STAR AuAu 200 GeV ] SN 06F STAR AuAu 200 GeV B
o~ - + —e— same charge, TPC 4 = r = —e— same charge, TPC q
‘e 40 [ —a— opp charge, TPC | ] = 041 —a— opp charge, TPC -
<" [ ~— same charge, FTPC| ] =° E —<— same charge, FTPC| ]
+ s L —=— opp charge, FTPC | ] N 0.2 —s— opp charge, FTPC | ]
£ 20 . - é_a 0: ]
] [ ] a - .
o I t o, 1+, F B e %
G 0 B R g B e £ 0.2 & 3
o & ] ] 3 & ]
o s ] 045 3
20+ ° o o 9 C) 0 4; [ ‘% % ]
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@ Strong negative correlation for same sign, consistent with CME expectation

o Essentially no correlation of opposite sign
—Possible explanation: the large medium destroys the opposite sign correlation
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The first CME results

STAR, Phys. Rev. C 81, 054908 (2010)

<c°5(¢a+¢ﬁ'2lPRp)>

x10° x10°
T T T T = [ T T T T T

1= STAR, 200 GeV a & 1+ STAR, 62 GeV a
r —e— same charge, AuAu | = r —e— same charge, AuAu |4
L —a— opp charge, AuAu  |] N L : —a— opp charge, AuAu  |]
r —=— same charge, CuCu |4 _é_& - % —<— same charge, CuCu |-
0.5 L =— opp charge, CuCu__|[] + 0.5 C B - —=— opp charge, CuCu |
[ ] PR L + i ]
[ ] w [ . s ]
ol f'j ] 3 o Fa - g |
. s G F . o
e & 1 F . .
o ] : ¢ 6 ]
051 ¢ - 7] 0.5 - 7]
3 ] r {'1 0 ]
-1 — A I ]
M P I I I U I I i I T I I
70 70 0
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Strong negative correlation for same sign in both Au+Au and Cu+Cu

Positive correlation of opposite sign for Cu+Cu despite being absent in Au+Au
—Medium in Cu+Cu is small enough that some opposite sign correlation remains?
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The first CME results

STAR, Phys. Rev. C 81, 054908 (2010)

1
IS

{cos(¢_* %' 2%ge)

10°

=

STAR AuAu 200 GeV
Centrality 30-50%

+ —»— same charge

~ —a— opp charge

&

-4
PR

-3
= 3 i<10 T T T ]
& [ [STAR AuAu 200 Gev b
> 2L Centrality 30-50% 3
N £ ]
A £ —e— same charge H
& L —s— opp charge 5l
+ 1 * il
&° [ } d
3 [fas . b1 i
2 op-trrreetwesyoyyt o
o n o ]
~ r - 4
A * N _
u L2 ]
r } b
-2 ' + } * u
= F i L 1 I H

30 0.5

s 2
(pm+ ptYB)IZ (GeVic)

@ No opposite sign correlation in Au+Au for any An or any pr

@ Same sign correlation gets strong for smaller An and larger pr
—The behavior in An matches naive expectations, different for pr
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ALICE results on the CME

ALICE, Phys. Rev. Lett. 110, 012301 (2013)

-3
. 0.6x10
= same opp.
= ® O ALICEPb-Pb @5y, =276 TeV
& 04 4 & SsTARAuA @5y = 0.2 TeV
= (ALICE) same-+opp. mean
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R T e v oM
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i
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S
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@ ALICE results consistent with STAR results

o Naive expectation is for weaker correlation due to shorter B-field lifetime
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ALICE results on the CME

ALICE, Phys. Rev. Lett. 110, 012301 (2013)

10°
2 o & same + ALICE Pb-Pb @ sy =2.76 TeV centrality 30-40%
4 | <= opp. + 4)
) 5 l
S | %f@; —m m B _|
¢ T8 ¥ « bl ¢ ‘BEER i !
& [ ] 8 ®
< o2t o # ' . .
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N ()
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@ ALICE results consistent with STAR results for both An and pr

ALICE Juniors' Day, CERN, 12 March 2015 - Slide 18

R. Belmont, Wayne State University



ALICE results
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on the CME
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correlator should have no CME signal, only backgrounds
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ALICE results on the CME

x10°
=
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@ Double harmonic correlator should have no CME signal, only backgrounds

o Difference between same sign and opposite sign consistent with zero
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ALICE results on the CME

x10° 10°
same opp. o B ALICE Preliminary E = [ same opp. o B ALICE Preliminary ]
hh (sys.) Pb-Pb Vs, =276 TeV 2 04 hh (sys.) Pb-Pb Vs =276 TeV ]
o nh 10-30% E = F » o =zh 30-50% E
o Kh = ¥ f = o Kh 4
= ph E g 02F o o ph ! o B
= E 8 [ = = E ]
: i E S o z ]
- E| - o ]
o ] ook © .
E %2F T o ]
*a of 3 ) S— . + A
' e E F | ]
i ‘ 3 06k ¢ E
L L L L E C L L L L 3
05 1 1.5 2 25 3 0.5 1 1.5 2 25 3
p$ (GeV/c) p? (GeV/c)

@ Measurements of different species may help disentangle background sources

@ Mesons (7 and K) similar to unidentified particles, protons different
—PID dependence stronger for opposite sign correlator

o Input from theory needed to fully understand backgrounds and PID dependence
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The chiral separation effect—an invitation to the chiral magnetic wave

Before moving on to the chiral magnetic wave, we need to briefly discuss the chiral
separation effect (CSE)

e D.T. Son and A.R. Zhitnitsky, Phys. Rev. D 70, 074018 (2004)
o M.A. Metlitski and A.R. Zhitnitsky, Phys. Rev. D 72, 045011 (2005)

@ Quantum anomalies at finite vector charge density drives the following relation

o Nce o
Ja = B
A 272 123%

@ This effect, an axial current proportional to a vector chemical potential, is called
the chiral separation effect (CSE)

o It is readily apparent that there is a strong relationship to the CME

- Nce .
Jy = B
v o2 HA

o And with that, onward to the chiral magnetic wave
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The Chiral Magnetic Wave

CSE

vy, > vt
u,>0 zr

L'm‘

Cc vyt
v, <V,

Hy<O

) 0
¢

W)

CSE leads to separation of chiralities at opposite poles

Kharzeev and Yee, Phys. Rev. D83, 085007 (2011)

°
o CME currents point in opposite directions, leading to electric quadrupole
°

o Burnier, Kharzeev, Liao, and Yee, Phys. Rev. Lett. 107, 052303 (2011)
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STAR results on v2i and Av, vs A, 30-40% centrality

’\?3.8*‘ L B B B /\;0-2 T T 1
< T Au+Au 200 GeV 30-40% | < | AuAu 200GeV
N F + 0.15<p_<0.5GeV/c o
¥ [T Pr & 30-40%
=} " >Yo 1
3.7 ~
- ® B
I : L =
I >
[ . of
3.6 B
L é [ i
3 ‘laJ ‘ ‘ STAR Preliminary - + (b‘> STAR Prelimina‘ry 1
-0.1 -0.05 0 0.05 0.1 01 -0.05 0 0.05
<observed A, > <A,>

o STAR preliminary, arXiv:1211.3216
e Charge asymmetry AL = A= (NT — N7)/(NT + N7)
°

Note change in x-axis scale on right plot—correction for efficiency/acceptance
@ Qualitatively consistent with CMW picture
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vzfE and Av, vs A, 30-40% centrality in ALICE

& [ 20.0047”“””
> 0104~ mpos ALICE Preliminary b ; L
r m neg Pb-Pb |5y =2.76 TeV 2 0,002 r
0.102— Centrality 30-40% - =
[ 0.2<p.<5.0 GeV/c ] = F
L ] 3 F
o1l -0.8<1<0.8 ] 0
C + ] r ALICE Preliminary T
0088 L . " B r Pb-Pb (Syy=276TeV |
Tr i e i . H j -0.002}— Centrality 30-40% i
L + ] - 0.2<p,<5.0 GeV/c ]
0.096 b L -0.8<n<0.8 1
P H R R SR -0.004 PR T S S B
0.1 -0.05 0 0.05 0.1 000457 -0.05 0 0.05 0.1
(N*-N)/(N*+N’) [uncorrected] (N*-N)/(N*+N') [uncorrected]

e Strong, clear signal

o Qualitatively consistent with STAR results
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vzfE and Av, vs A, 30-40% centrality in ALICE

& [ & 0.004
) a2 L
= 0104~ = pos ALICE Preliminary b ; L e fullevent
r m neg Pb-Pb sy, =2.76 TeV 1 2 0,002 [ © random subevents
0.102— Centrality 30-40% — RT . [
[ 0.2<p.<5.0 GeV/c ] = F
L ] 3 F
04l -0.8<1<0.8 N 0 -
C + ] [ ALICE Preliminary T
0088 L . " B [ Pb-Pb (Syy=276TeV |
Tr i e i . H j -0.002}— Centrality 30-40% i
L + ] - 0.2<p,<5.0 GeV/c ]
0.096 b L -0.8<n<0.8 1
P H R R SR -0.004 . P R R B
-0.1 -0.05 0 0.05 0.1 000457 -0.05 0 0.05 0.1
(N*-N)/(N*+N’) [uncorrected] (N*-N)/(N*+N') [uncorrected]

e Strong, clear signal
o Qualitatively consistent with STAR results
@ Using random subevents with half the track population weakens signal

@ Observable has significant efficiency dependence
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Proposal for new measurement: 3-particle correlator

@ v as a function of A is very interesting, but requires efficiency correction due to
negative binomial sampling

So what else can we do? Measure the covariance! (vA) — (v)(A)
v is a 2-point correlation, so this is a 3-point correlation

Can also generalize A to the charge of a third particle g3, since (q3)event = A

Putting it together, the general 3-point correlator is

(cos(n(d1 — ¥n))as) — (az)(cos(n(¢1 — ¢n)))
o Can construct similar correlator with cumulant instead
(cos(n(d1 — $2))as) — (gs)(cos(n(¢1 — ¢2)))

@ 2-particle Q-cumulants used to calculate (cos(n(¢1 — ¢2)))
cn{2} integral, d,{2} differential
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3-particle correlator: 2"4 harmonic
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~ 20X
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What causes the increased charge separation as the collisions become more peripheral?

@ Peripheral — stronger magnetic field — stronger CMW effect?

@ Central — more combinatoric pairs — trivial dilution of local charge conservation
(LCCQ) effects?

Dependence on magnitude of v» or dN/dy?

@ Some combination of these (and possibly other) effects?
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3-particle correlator: higher harmonics

3" harmonic

=]

4% harmonic
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CMW quadrupole expected to affect only 2"d harmonic, LCC expected to affect

Small effect for 3" harmonic, no observed effect for 4th harmonic
—Note y-axis scale reduced by x10 compared to 2"¢ harmonic
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Higher order multipole effects for CMW or harmonic interference? LCC only?
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Intermission

@ What kind of differential studies can we do with this correlator?
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3-particle correlator vs An

(A2, - (9,Xd, (2D

o Charge independent subtraction (charge correlation not considered)
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- 4N
o o o

o o

agt

F 'O pos (reflected) Centrality 20-60%
— O neg (reflected) —
F m pos Om  0.2<p <5.0GeVic 7
F m neg gt Wy =

E ALICE Preliminary om

F Pb-Pb {5y, =2.76 TeV E
P P TN B AU R
-1.5 -1 -0.5 0 0.5 1 15

An

ALICE Juniors' Day, CERN, 12 March 2015 - Slide 29



3-particle correlator vs An
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o Charge dependent subtraction (charge correlation considered)
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3-particle correlator vs An
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Charge dependent subtraction (charge correlation considered)

The observed effect has a large contribution from the dependence of g3 on ¢;

o Both the strength and range are significantly reduced, but a pronounced charge
dependent effect remains

@ How much contribution from charge conservation has been removed? Is there
some way to remove all LCC effects leaving only CMW?
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3-particle correlator vs An for higher harmonics
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o Charge independent subtraction

@ Moderate effect for 3", minimal effect for 4th
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3-particle correlator vs An for higher harmonics
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-+
3

(d,{2}a,) - (q

3" harmonic

5 x10°
T T T T
4 g ::Z i;:“zzi:)) Centrality 20-60%
3 ® pos 0.2<pT<5.0 GeV/c

® neg
2
1

[

; sttanepidy

-3 E ALICE Preliminary
-4 E-Pb-Pb s, =2.76 TeV

) T S S S S A e |
15 -1 0.5 0 05 1 1.5
An

o Charge dependent subtraction
o Very little effect for either
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Local parity violation is a fundamental feature of QCD

In an important sense, it must be there, but that doesn’t mean it's present in the
heavy ion collisions we can measure

In fact there are several key issues
Does the magnetic field live long enough?
Are the quarks formed early enough?

Neither of those questions has been addressed yet, though work is ongoing to try
to answer them

Presence of B-field can be evinced by charge and rapidity dependent v;
Very promising recent work in the Flow PAG on this

Presence of quarks can be evinced by charge dependent v; in A+B collisions
Can do this in Cu+Au collisions at RHIC, results coming soon
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The biggest issue (of course) is understanding the backgrounds

At the current time, the only viable candidate for background to the CME and
CMW observables is local charge conservation on top of strong radial flow

@ The current modeling gets some observables right but others wrong

@ Promising avenue of investigation: anomalous hydrodynamics, which embeds the
LPV effects in a realistic hydrodynamical medium

@ There's no smoking gun yet, but the results we have already are promising, and
there’s much more to be done
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