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ABSTRACT

One of the biggest quests in nuclear and particle physics in the last three decades is to

unravel the spin structure of hadrons like protons and neutrons. Spin not only plays a central

role in the strong force connecting the elementary constituents of matter, but is also respon-

sible for many of its fundamental properties including the magnetic moment which defines

the magnetic properties, the different phases in low temperature physics, and the stability of

the universe in general. The origin of the spin of particles like protons and neutrons, which

make up to 99.9% of the visible universe, has been the focus of experimental and theoretical

efforts. Experiments at European Muon Collaboration (EMC) found that our knowledge

of how the spin of the nucleon is derived from its elementary constituents is naive, and our

interpretations are not valid. This was termed the spin crisis, an outstanding puzzle for more

than three decades and is still not solved. Deciphering the spin puzzle requires knowing the

spin of elementary constituents of these particles, quarks and gluons.



One of the major objectives of the Relativistic Heavy Ion Collider (RHIC) spin program

at Brookhaven National Laboratory is the measurement of the gluon helicity contribution

to the proton spin via measuring the double helicity asymmetry (ALL) in various channels.

In Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) we measure ALL in

π0 meson production. The π0 meson is reconstructed through its di-photon decay channel.

The photons are detected by the PHENIX Electromagnetic Calorimeter, which consists of

lead glass and lead scintillator detectors and covers a rapidity of |η| < 0.35 and azimuthal

angle of 180 ◦.

In this dissertation, the results of ALL in π0 production from the data collected in 2013

at center of mass energy = 510 GeV are presented. In 2013, the total integrated luminosity

is 150 pb−1 which is almost ten times the total luminosity recorded in 2009 at
√
s = 200

GeV. Due to the increase in the center of mass energy and integrated luminosity, these mea-

surements cover the Bjorken x range down to ∼ 0.01. A non-zero ALL result is observed

that is consistent with positive gluon polarization in the probed kinematics.

INDEX WORDS: RHIC, PHENIX, Electromagnetic Calorimeter, double helicity asym-
metry, gluon polarization
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CHAPTER 1

INTRODUCTION: STRUCTURE OF THE PROTON

1.1 Brief History

The history of the strong interaction begun in mid 1960, when quarks were introduced to

explain the group of strongly interacting particles that had been discovered from accelerator

experiments [1]. The color quantum number was needed to describe particles such as the

Ω−, a state of three strange quarks, each with the same spin 1
2

adding to a total spin of 3
2

[3].

In late 1960, an experiment at the Stanford Linear Accelerator Center (SLAC) showed that

these quarks were real [4, 5, 6]. In the early 1970s, the theory of Quantum Chromodynamics

(QCD) was developed with quarks, gluons, and color charge; perturbative QCD could be used

for precise calculations of hard scattering. From the 1980s to the present, electron-proton

and antiproton-proton colliders have carried out beautiful precision tests of unpolarized

perturbative QCD predictions. Similarly the polarized studies of the strong interaction is

also closely related to SLAC. In the 1960s, a polarized electron source, PEGGY, which

was developed at Yale University, was brought to SLAC to initiate a program to explore

the structure of the proton with the polarized beam and target [7]. A polarized electron

probes a polarized proton through the absorption of polarized photons with known helicity1.

Quarks in the proton with opposite helicity to that of the photon flip spin when the photon is

absorbed. Quarks with the same helicity cannot absorb the photon. Thus, one accesses the

spin structure of the proton. The first results showed a strong correlation of the quark spins

with that of the proton [7]. This was expected from the simple quark model of the proton

developed in 1970s [8]. These experiments studied quarks which carried a large fraction

(x) of the momentum of the protons. Later, in 1988, the European Muon Collaboration

at CERN reported this correlation for lower x quarks [9]. The EMC experiment discovered

1Projection of spin along the direction of momentum



2

that little of the proton spin was carried by the quarks, on average, which was a major

surprise. Measurements with electron and muon probes continue through today from several

experiments [11, 12, 13, 14]. These experiments have confirmed that only a small fraction of

the proton spin is carried by the quarks. The distribution functions for quarks and gluons at

different momentum fraction are shown in Figure 1.1. From this figure, it can be seen that

Figure (1.1) Parton distribution function for the quarks and gluon. The green dotted line
represent the ū quark, blue dash dotted line represent the d̄ quark, red dash line represent
the d quark, lower solid line represents the u quark and upper solid line represents the gluon
distribution. The data was compiled by particle data group (PDG) [36].
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at lower x, the gluonic distribution function dominates. The focus was then diverted to the

gluonic contribution to the total spin of proton. Starting in 2001, the Relativistic Heavy Ion

Collider (RHIC) at Brookhaven National Laboratory (BNL) collided polarized protons to

measure the gluonic contribution to the spin of the proton. The polarized protons provided

strongly interacting probes which can interact directly with the gluons as well as the quarks

in the proton and allow direct measurement of the gluon contribution [15, 17].

1.2 Experimental Techniques: Studying the Structure of Hadrons

Understanding the proton structure requires understanding of the basic properties of the

proton such as charge, momentum, spin, etc. Since quarks and gluons are the constituents of

the proton, understanding those properties necessitate understanding the quarks and gluons

which make up the proton. In order to achieve this goal, several experimental techniques

are employed.

1.2.1 Deeply Inelastic Scattering (DIS) and Proton Structure

The first of a long series of experiments on highly inelastic electron scattering was car-

ried out in late 60s at SLAC using liquid hydrogen and, later, liquid deuterium targets. The

primary objective of this experiment was to look at the energy transfer during the scattering

of electrons from the nucleon. This process is termed as deep inelastic scattering. Deep

inelastic scattering has been described in numerous text books: [2, 19, 20]. The original

experiments of this type in particle physics were done in the 1960s and showed that nucleons

have a sub-structure of point-like charged constituents; the first evidence for the existence

of quarks [18]. The idea behind the deep inelastic scattering is to accelerate electrons to a

very high energies, then allow them to interact with stationary protons and neutrons.

At high energies, the wavelengths associated with the electrons are much smaller than

size of a proton. This allows probing distances that are small compared with the proton,

that is, deep inside the proton. But due to the high energies the proton will be broken apart
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and produce several new particles called hadrons. Since the target has been changed in this

process it is called inelastic scattering.

To find the amplitude of the electron-nucleus scattering, we should in principle solve

the Schrodinger (or Dirac) equation using a Hamiltonian that includes the full electromag-

netic interaction and use nuclear wavefunctions. The Rutherford cross-section, which comes

from the electron-nucleon scattering, in its relativistic form may be written in the following

Equation:

dσ

dΩRutherford

=
Z2α2(~c)2

4E2 sin4( θ
2
)
, (1.1)

where E is the total initial energy of the projectile, θ is the angle through which it is scat-

tered, Z is the atomic number and α = e2

4πε0~c , e is the charge, ~ is the plank’s constant and

c is the speed of light.

Equation 1.1 represents the scattering of a spinless (spin 0) point - like projectile of unit

charge from a fixed point-like target with electric charge Ze, i.e., the charge distribution of

the target is neglected. In order to take the electron’s helicity state into account Equation 1.1

can be modified into Mott cross-section [10]:

dσ

dΩMott

=
dσ

dΩRutherford

[1− β2 sin2(
θ

2
)], (1.2)

where sin2(θ/2) arises from averaging the spin over all the electrons, β = v
c

and v is the

velocity of the initial electron. At higher energies the recoil of the target needs to be taken

into account and this introduces a factor of E
′

E
on the right-hand side of Equation 1.2, where

E
′

is the final energy of the electron. We also need to account for interaction with the

magnetic moment of the target in addition to its charge. With this the final form of the

differential cross-section is:

dσ

dΩ
=

dσ

dΩMott

E
′

E
[1 + 2τ tan2 θ

2
], (1.3)
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where

τ = − q2

4M2c2
(1.4)

and M is the mass of the target. Because the energy loss of the electron to the recoiling

nucleus is no longer negligible, the momentum transfer (q), has been replaced by the four-

momentum transfer q whose square is

q2 = (p− p
′
) = 2m2

ec
2 − 2(EE

′
/c2 − |p|

∣∣∣p′∣∣∣ cos θ) ≈ −4EE
′

c2
sin2(

θ

2
), (1.5)

where p (p
′
) is the four-momentum before (after) scattering. (Because q2 ≤0, it is common

practice to replace it with Q2 = -q2 so as to work with positive quantities). The final

modification is due to the spatial extension of the nucleus. If the spatial charge distribution

within the nucleus is written as f(x) then we define the form factor F (q2) [2] by

F (q2) ≡ 1

Ze

∫
eiq.x/h f(x) d3x with Ze =

∫
f(x) d3x, (1.6)

i.e., the Fourier transform of the charge distribution. In the case of a spherically symmetric

charge distribution, the angular integrations in Equation 1.6 may be done using spherical

polar coordinates to give

F (q2) =
4π~
Zeq

∫ ∞
0

rρ(r) sin(
qr

~
)dr, (1.7)

where q = |q| and ρ(r) is the radial charge distribution. The final form of the experimental

cross-section in this approximation is given by

(
dσ

dΩ
)exp = (

dσ

dΩ
)Mott

∣∣F (q2)
∣∣2 . (1.8)

The above procedure is good for a low energy lepton scattered off a proton in which the

determination of the radial charge distributions is made. In a similar way we can use high-

energy inelastic scattering to investigate the charge distribution within nucleons. This is
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referred to as deep inelastic scattering (DIS), because the projectiles probe deep into the

internal structure of the nucleon. The dominant one-photon contribution to the inelastic

scattering of a charged lepton from a proton in the spectator quark model2 is illustrated

in Figure 1.2. Unlike elastic scattering where at a given lepton energy E there is only one

Figure (1.2) Feynmann diagram of deep inelastic scattering. Here the lepton l− scattered off
the quark of the proton (p).

free variable (e.g. the scattering angle), in inelastic scattering the excitation energy of the

nucleon adds more degrees of freedom, so we can define two independent variables v and x

that are given by Equations 1.9 and 1.10 [36]

2Mv ≡ W 2c2 +Q2 −M2c2, (1.9)

x ≡ Q2/2Mv. (1.10)

where, M is the proton mass, W is the invariant mass of the final-state hadrons and Q2 is

the squared energy-momentum transfer:

Q2 = (E − E ′)2/c2 − (p− p
′
)2. (1.11)

2In this model, a baryon is described as a three-constituent quark system where one quark is free to
interact with the photon field, and a pair of noninteracting quarks is treated as a single on-mass-shell
spectator diquark with certain effective mass
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In the rest frame of the initial proton, v reduces to

v = E − E ′ (1.12)

which is the Lorentz-invariant generalization for the energy transferred from the lepton to

the proton.

In case of low energy scattering experiments, we have considered different factors which

contribute to the cross section calculation. The magnetic interaction also introduces another

form factor in case of high energy scattering.

The differential cross-section in terms of form factors can be written as

d2σ

dΩdE ′
= (

dσ

dΩ
)Mott[W2(Q2, v) + 2W1(Q2, v) tan2(θ/2)], (1.13)

The two form factors denoted by W1 and W2 in Equation 1.13 are called structure functions,

also, θ is the lepton scattering angle. For values of W ≤ 2.5 GeV/c2, the cross-sections

show considerable structure due to the excitation of nucleon resonances, but above this mass

they are smoothly varying. In the latter region, the values of the structure functions can

be extracted from the data by choosing suitable parameterizations and fitting the available

data in an analogous way to the way charge distributions of nuclei were deduced. However,

additional information is needed to learn about the struck quark in the hadron. This is

achieved by what is called semi inclusive deep inelastic scattering.

1.2.2 Semi Inclusive Deep Inelastic Scattering (SIDIS)

Semi-inclusive DIS (SIDIS) is similar to DIS, except that (at least) one hadron in the

final state is observed. Since the leading hadrons from any fragmentation are detected, it

can give a clue about the struck quark within the hadron. In this process, it is assumed that
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the timescale for the absorption of a virtual photon is very short compared to the timescale

needed for the quark to fragment into a hadron. The fragmentation process is not calculable

in perturbative Quantum Chromodynamics (pQCD) since it involves long distance processes

and thus corresponds to very low Q2 values where pQCD techniques cannot be used.

The fragmentation process in semi-inclusive scattering is parameterized by fragmenta-

tion functions Dh
f (Q2,z), which represent the probability that a quark of flavor f fragments

into a hadron of type h with a fraction z of the virtual photon energy (Eh = zv). The

kinematic dependence of the fragmentation function involves only Q2, which represents the

effect arising from gluon radiation of the struck quark, similar to the scaling violations for

the structure functions. In the quasiparticle-phonon model (QPM) the cross section for the

process e + N → e + h + X is assumed to be the product of the differential inclusive cross

section and the fragmentation probability of finding a hadron h originating from a quark of

any flavor f [21].

d3σ(eN → ehX)

dxdQ2dz
=
d2σ(eN → eX)

dxdQ2

Σfe
2
fqf (x,Q

2)Dh
f (Q2, z)

Σfe2
fqf (x,Q

2)
, (1.14)

Here, it is assumed that the quasi-free scattering process (related to the quark momentum

distribution qf (x) and the fragmentation process (described by the fragmentation function,

Dh
f (z)) enter as two independent factors in the cross section (at the flavor level). This is

known as factorization.

1.2.3 Hadron-Hadron Scattering

Hadron-hadron scattering is another approach to understand the nucleon structure. In

this process, quarks and gluons interact at leading order. The basic interaction considered in

this work is p+p→ X. However, in proton-proton (p+p) inelastic scattering, as neither the

proton nor the remnant is measured, a final state created in the interaction (for example, a

hadron h, a jet, or a direct photon) is observed. In all measurements discussed in this work,
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we assume only one final state particle (or jet), and so Dd
D(z,Q2) is included in the sum over

X. As both incoming particles are protons, there are two PDFs contributing to the cross

section

σp+p→h+X =
∑

fa,b=q,q,g

fa(xa, Q
2)⊗ fb(xb, Q2)⊗ σ̂a+b→c+X(xaP1, xbP2, q, zPc)⊗Dc

h(z,Q
2).

(1.15)

In this equation, the observable in final state is assumed to be a hadron. In this work, the

final state observable is neutral pion (π0). A drawback of p+p collisions is that neither x nor

Q2 are directly measured in the interaction. Instead, for the requisite hard scale needed for

theoretical interpretation (normally µ2= Q2 in DIS and SIDIS), the transverse momentum,

pT , of the measured probe is used.

1.2.4 Quark Model and QCD (Quantum Chromodynamics)

Asymptotic Freedom and QCD The strong interaction derives its name from the

force that, among other things, binds quarks into hadrons. However, some remarkable

phenomena depend on the fact that the interaction gets weaker at short distances; that is,

on asymptotic freedom which can be intrepreted as “quarks are born free, but everywhere

they are in chains”. The short-distance interactions lead to large momentum transfers |q|

between the particles, with |q| = O(~/r), where r is the distance at which the interaction

occurs. The strength of the interaction, in general depends on the four-momentum transfer

as:

Q2 ≈ E2
q/c

2 − q2, (1.16)

In QCD, the coupling constant αs is given by [23]

αs(Q
2) =

12π

(33− 2Nf ) ln(Q2/Γ2)
, (1.17)

where Nf is the number of quark flavours up: (u), down (d), charm (c), strange (s), top (t)

and bottom (b) with 4m2
qc

4 < Q2, and Q2 � Γ2. Γ is a constant called the scale parameter
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and is determined from experiments. From Equation 1.17, it is seen that αs is not constant

but has inverse relationship with Q2.

If the distance between the two quarks is increased, the force between them increases

which is different behaviour from that of a force between particles connected by a spring.

If the force applied to the two particles is sufficiently large, the spring will break and the

particles will be free. But in case of hadrons, the energy stored in the color field increases

until it becomes sufficiently large to create qq̄ pairs and eventually combinations of these will

appear as physical hadrons. This process is called fragmentation and is of immense interest

for the physicists who study the strong interaction. Quantum fluctuations also exist in QCD

and give rise to variation in the interaction strength with distance of the interaction. As

antiscreening effect 3 is larger than the screening effect so the net effect is that the interaction

grows weaker at short distances hence the term asymptotic freedom. With this effect, the

strong interaction coupling αs given by Equation 1.17 is now modified as [2]:

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)
12π

(33− 2Nf ) ln (Q2/µ2)
, (1.18)

where µ2 is a low-energy value of Q2 at which the value of αs is known and Nf is the number

of quark flavors that take part in the interaction. The coupling constant of the proton as a

function of Q2 is shown in Figure 1.3. Similarly, the structure function of proton measured

from Deep Inelastic Scattering (DIS) is shown in Figure 1.5. Here the values are for different

Bjorken x-ranges. In the parton model, we imagine hadrons as extended objects, made up of

constituents (partons) held together by their mutual interactions. Of course, these partons

are the quarks and gluons in the real world, as described by QCD, but we do not use this

fact yet. At the level of the parton model, we assume that the hadrons can be described in

terms of virtual partonic states, but that we are not in a position to calculate the structure of

3In the vicinity of a charge, any vacuum surrounding it becomes polarized: virtual particles of opposing
charge are attracted to the charge, and virtual particles of like charge are repelled. The net effect is to
partially cancel out the field at any finite distance. Getting closer and closer to the central charge, one
sees less and less of the effect of the vacuum, and the effective charge increases. In QCD the virtual quark-
antiquark pairs tend to screen the color charge.
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Figure (1.3) Coupling constant αs corresponding to four flavours and a scale parameter Γ =
0.2 ± 0.1 GeV/c; the dashed, solid and dot-dashes curves correspond to Γ = 0.1, 0.2 and
0.3, respectively. This figure is taken from [19].

these states. On the other hand, we assume that we do know how to compute the scattering

of a free parton by, say, an electron. By free, we simply mean that we neglect parton-parton

interactions. This dichotomy of ignorance and knowledge corresponds to our inability to

compute perturbatively at long distances in QCD, while having asymptotic freedom at short

distances. To be specific, consider inclusive electron-hadron scattering by virtual photon

exchange at high energy and momentum transfer. Consider how this scattering looks in

the center-of-mass frame, where two important things happen to the hadron. It is Lorentz

contracted in the direction of the collision, and its internal interactions are time dilated. So,

as the center-of-mass energy increases the lifetime of any virtual partonic state is lengthened,

while the time it takes the electron to traverse the hadron is shortened. When the latter is

much shorter than the former, the hadron will be in a single virtual state characterized by

a definite number of partons during the entire time the electron takes to cross it. Since the

partons do not interact during this time, each one may be thought of as carrying a definite

fraction x of the hadron’s momentum in the center of mass frame. We expect x to satisfy 0

< x < 1, otherwise one or more partons would have to move in the opposite direction to the
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Figure (1.4) Structure function (F2(x,Q2)) of proton measured from DIS. The data are
compiled by particle data group (PDG) [36].
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hadron, an unlikely configuration. It now makes sense to talk about the electron interacting

with partons of definite momentum, rather than with the hadron as a whole. In addition,

when the momentum transfer is very high, the virtual photon which mediates electron-parton

scattering cannot travel far. Then, if the density of partons is not too high, the electron will

be able to interact with only a single parton. Also, interactions which occur in the final state,

after the hard scattering, are assumed to occur on time scales too long to interfere with it.

With these assumptions, the high energy scattering process becomes essentially classical and

incoherent. That is, the interactions of the partons among themselves, which occur at time-

dilated time scales before or after the hard scattering, cannot interfere with the interaction

of a parton with the electron. The cross section for hadron scattering may thus be computed

by combining probabilities, rather than amplitudes. We define a parton distribution fa/H(ξ)

as the probability that the electron will encounter a frozen, non-interacting parton of species

a with fraction ξ of the hadron’s momentum. We take the cross section for the electron to

scatter from such a parton with momentum transfer Q2 as the Börn cross section σB(Q2,

ξ). Straightforward kinematics shows that for free partons ξ > x ≡ 2 pq /Q2, and the total

cross section for deeply inelastic scattering of a hadron by an electron is

σeH(x,Q2) =
∑
a

∫ 1

x

dξ fa/H(ξ)σB(x/ξ,Q2). (1.19)

1.3 Structure of Proton

To understand the structure of the proton, the experimental techniques described in the

previous sections are used. In the coming sections, the charge, momentum and spin of the

proton will be discussed.

1.3.1 Parton density functions

The proton is composed of three valence quarks which are denoted by qv. Two of them

are known as up quarks and one is the down quark. They are primarily responsible for

determining the properties of a hadron. It can however occur (in particular at high Q2,



14

corresponding to a high resolution) that a valence quark radiates a gluon which then splits

into a quark-antiquark pair which is then probed by the virtual photon. These quarks are

referred to as sea quarks and are denoted by qs. Summing over the measured momenta of

the partons should give the proton momentum.

∫ 1

0

dxx(u+ ū+ d+ d̄+ s+ s̄) = 1, (1.20)

But experimental data [20], neglecting the contribution of strange quarks, show that,

∫ 1

0

dxF ep
2 =

4

9
εu +

1

9
εd = 0.18, (1.21)

∫ 1

0

dxF en
2 =

1

9
εu +

4

9
εd = 0.12 (1.22)

where F ep
2 and F en

2 are the structure functions of proton and neutron, respectively. By solv-

ing the above equations we can see that: εu = 0.36 and εd = 0.18, and the fraction of the

momentum of the proton not carried by quarks is: εg = 1 - εu - εd = 0.46. Almost half of the

proton momentum is carried by electrically uncharged partons. By repeating the scattering

experiments with neutrinos instead of electrons, one observes that these uncharged partons

do not interact weakly either. The parton carrying the missing momentum is now known as

the gluon, the gauge boson of QCD. Thus, the new momentum formula for the quarks and

gluons is written as

∫ 1

0

dxx(u+ ū+ d+ d̄+ s+ s̄) +

∫ 1

0

dxxg(x) = 1. (1.23)

1.3.2 Polarized Deep Inelastic Scattering

Another method to study the structure of a nucleon is via the polarized deep inelastic

scattering. A dimensionless physical quantity, called scaling, is introduced to understand

this process. Scaling of a large class of dimensionless physical quantities in elementary parti-

cles strongly suggests that experimentally observed strongly interacting particles (hadrons)
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behave as collections of point-like constituents when probed at high energies. A property of

hadrons probed in high-energy scattering experiments is said to scale when it is determined

not by the absolute energy of an experiment but by dimensionless kinematic quantities, such

as a scattering angle or the ratio of the energy to a momentum transfer. Because increas-

ing energy implies potentially improved spatial resolution, scaling implies independence of

the absolute resolution scale, and hence effectively point-like substructure. In high Q2 deep

inelastic scattering the structure functions exhibit approximate scaling as follows:

MW1(v,Q2)→ F1(x,Q2), (1.24a)

vW2(v,Q2)→ F2(x,Q2), (1.24b)

v

M
G1(v,Q2)→ g1(x,Q2), (1.24c)

v2

M2
G2(v,Q2)→ g2(x,Q2). (1.24d)

where W1 and W2 are the structrue functions and G1 and G2 are the spin dependent struc-

ture functions. These variables are scaled to new variables like: F1, F2, g1 and g2. For a

longitudinally polarized proton target, the polarized differential cross-section is

(
d2σ ↑⇑
dΩdζ

− d2σ ↑⇓
dΩdζ

)
=

4α2ζ

MvQ2E

[
(E + ζ cos θ)g1(x,Q2)− 2xMg2(x,Q2)

]
. (1.25)

where E and ζ are the energies of the source and the target. Applying the Equations 1.24 to

the cross-section Equation 1.25 for the longitudinally polarized target, we can find the g2 con-

tribution to the differential cross section and the longitudinal spin asymmetry is suppressed

relative to the g1 contribution by the kinematic factor M
E
∼ 0 [20],

A1 =
σ 1

2
− σ 3

2

σ 1
2

+ σ 3
2

=
MvG1 −Q2G2

M3W1

=
g1 − γ2g2

F1

→ g1

F1

(1.26)

where

γ =
2Mx√
Q2

=

√
Q2

v
(1.27)
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The world data on the polarized structure function for the proton, deuteron and neutron
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Figure (1.5) Unpolarized parton distribution function obtained in Next to Next to leading
order global analysis at scales µ2 = 10 GeV 2 and µ2 = 104 GeV 2. The data are compiled by
particle data group (PDG) [36].

are shown in Figure 1.6.

1.3.3 Polarized Partons and high-energy proton-proton collisions

Before discussing polarized partons collisions, let us see the results for the unpolarized

scattering. Figure 1.5 shows the unpolarized parton distribution function obtained in next

to next to leading order (NNLO NNPDF2.3) global analysis. Now going back to polarized

case, let us consider the case of pp→ π + X. The fragmentation function Dπ
f (z,µ2) is defined

as the probability density for a parton f to produce a pion in the final state with momentum

fraction z of the parton f through hadronization. In the QCD parton model the cross section

for this process is given by the Equation:
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Figure (1.6) The world data on xg1 as a function of Bjorken x. The data are compiled by
particle data group (PDG) [36]

.
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dσpp→πX

dβ
=
∑
f1,f2,f

∫
dx1dx2dzf

p
1 (x1, µ

2)fp2 (x2, µ
2)
dσ̂f1f2→fX

′

dβ
(x1p1, x2p2, βπ/z, µ)Dπ

f (z, µ2)

(1.28)

Here p1 and p2 are the momenta of the incident protons and β is for the appropriate set

of kinetic variables of the reaction. The fpi (x, µ2) terms are the quark and gluon parton

distributions of the incident protons. The σ̂f1f2→fX
′

are the underlying hard-scattering cross

sections for initial partons f1 and f2 producing a final-state parton f plus unobserved X ′.

The parton model described above can be easily generalized to spin dependent processes.

The fragmentation function for a parton to produce a pion should not depend on the spin

of the parton because the pion has spin zero. Equation 1.28 can be generalized as

dσpp→πX

dβ
≡ 1

4

[
dσpp→πX++

dβ
+
dσpp→πX−−

dβ
− dσpp→πX+−

dβ
− dσpp→πX−+

dβ

]
(1.29a)

=
∑
f1,f2f

∫
dx1dx2dz∆fp1 (x1, µ

2)∆fp2 (x2, µ
2)× d∆σ̂f1f2→fX

′

dβ
(x1p1, x2p2, βπ/z, µ)Dπ

f (z, µ2)

(1.29b)

where

d∆σ̂f1f2→fX
′

dβ
≡ 1

4

[
dσpp→πX++

dβ
+
dσpp→πX−−

dβ
− dσpp→πX+−

dβ
− dσpp→πX−+

dβ

]
(1.30)

1.3.4 Spin Structure of the Proton

Bjorken was the first to discuss spin structure in the context of deep inelastic scattering

[24]. In 1966, he derived a fundamentally important sum rule

Ip − In =

∫ 1

0

(gp1 − gn1 )dx =
1

6
| gA
gV
|, (1.31)

where Ip and In are the structure function for proton and neutron and the factor | gA
gV
| is the

ratio of the nucleon axial vector and vector couplings, and measured to be 1.2573 ± 0.0028

from beta decay of the neutron. gp1 and gn1 are the structure functions and are related to the

asymmetries Ap1 and An1 for proton and neutron, respectively, and the unpolarized structure
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functions F p
1 and F n

1 are given by g1(x) ≈ A1(x) F1(x), and x is the Bjorken scaling variable.

The Bjorken sum rule is valid assuming an infinite Q2. Since experiments do not achieve

Q2 = ∞, there are QCD corrections to Equation 1.31. To incorporate the modification,

Ellis-Jaffe sum rules were proposed in 1973 [22]. The Ellis-Jaffe sum rules are

Ip =

∫ 1

0

gp1(x)dx =
1

12
| gA/gV |

[
1 +

5

3
(3F −D)/(F +D)

]
(1.32)

, and

In =

∫ 1

0

gn1 (x)dx =
1

12
| gA/gV |

[
− 1 +

5

3
(3F −D)/(F +D)

]
. (1.33)

where F and D are SU(3) parameters and are derived from experimental measurements of

the beta decay of the neutron and hyperons in the baryon octet whose values are F = 0.459

± 0.008 and D = 0.798 ± 0.008 [34]. Ellis-Jaffe sum rules assume that strange quarks in the

nucleon are unpolarized.

The structure function gp1 was determined by the EMC experiment [35] at a fixed Q2 = 10.7

GeV 2, as ∫ 0.7

0.01

gp1dx = 0.120± 0.013± 0.056. (1.34)

Also the contributions outside the measured region were obtained from QCD evolution and

are given by

∫ 1

0.7

gp1dx = 0.001, (1.35a)∫ 0.01

0

gp1dx = 0.002. (1.35b)

The systematic errors affect the values in all the bins in the same way. The contribution

to the total uncertainty from each separate source is estimated by recalculating the integral

after increasing or decreasing all the points simultaneously by the corresponding systematic
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errors. Thus, from the asymmetry measurements the integral becomes

∫ 1

0

gp1dx = 0.123± 0.013± 0.019, (1.36)

where the ± 0.013 is the statistical error and ± 0.019 is the systematic error.

The combined values of the integral of structure function from SLAC and EMC is shown

below. The SLAC data give

∫ 0.7

0.1

gp1dx = 0.094± 0.008± 0.014, (1.37)

and in the same region, the EMC data give

∫ 0.7

0.1

gp1dx = 0.090± 0.010± 0.011. (1.38)

Combining all the regions by extrapolating into the unmeasured regions gives

∫ 1

0

gp1dx = 0.126± 0.010± 0.015. (1.39)

The value expected for this integral from the Ellis-Jaffe sum rule is 0.189 ± 0.005 using the

current values of F/D = 0.631 ± 0.018, gA = 1.254 ± 0.006 and αs = 0.27 ± 0.02 at Q2 =

10.7 GeV 2. The measured value is inconsistent with this prediction. The polarized parton

distribution functions for different quarks are shown in Figure 1.7. Including the gluon

distribution function, the polarized distribution function of quarks and gluons is shown in

Figure 1.8. The naive quark model (NQM) predicts that due to relativistic effects the proton

spin consists of only the total angular momentum of the quarks which can be expressed as:

〈
SPz
〉

=
1

2
=

1

2
∆Σ + Lq, (1.40)

where ∆Σ is the quark spin contribution and Lq the contribution from the quark orbital
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Figure (1.7) The parton distribution function for different quarks. The triangle data points
are from HERMES experiment, the empty square box data points are from SMC experiment
and the filled square box data points are from COMPASS experiment. Similarly, the solid
lines are from DSSV2008 [63], the dash lines are from LSS2010 [64] and dot lines are from
AAC2008 [65].
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Figure (1.8) NLO polarized parton distributions at the input scale Q2
0 = 4.0 GeV2 (solid

line) compared to results obtained by GRSV (dashed-dotted line [47]), DSSV (long dashed-
dotted line) [63], AAC (dashed line [49] , LSS (long dashed line) [71]. The shaded areas
represent the 1 σ bands calculated by Gaussian error propagation. “This fit” represents the
fit from [16].
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angular momentum. The value of ∆Σ was supposed to be 0.6. However, the experiments

performed at EMC [20] showed that the quark spin fell short of 0.6 and opened a new chapter

in this arena.

According to the modern concept, the total spin of the proton is the sum total of spin

contribution from quarks (∆Σ), gluons (∆G) and angular momentum (Lq and Lg for quark

and gluon) from Jaffe-Manohar spin sum rule [51] which is given by Equation 1.41.

〈
SPz
〉

=
1

2
∆Σ + ∆G+ Lq + Lg. (1.41)

Recent results from DIS have confirmed that the quark spin contribution is about 25 - 30%

which falls short of the original estimations.

1.3.5 Longitudinal Double Spin Asymmetry

In order to incorporate the polarization effects, the unpolarized cross-section Equa-

tion 1.15 is modified as

∆σp+p→h+X =
∑

fa,b=q,q,g

∆fa(xa, Q
2)⊗∆fb(xb, Q

2)⊗∆σ̂a+b→c+X(xaP1, xbP2, q, zPc)⊗Dc
h(z,Q

2),

(1.42)

where ∆fa and ∆fb are the polarized parton distribution functions, ∆σ is the difference

between the same and opposite helicity particle

∆σ = σ++ + σ−− −
(
σ+− + σ−+

)
(1.43)

Experimentally, however, there are often large systematic uncertainties due to detector ac-

ceptance and efficiencies, which make such a cross section measurement difficult. Instead

the ratio of polarized and unpolarized cross sections are measured which largely reduces the

systematic uncertainties. This ratio is called the longitudinal double spin asymmetry ALL,
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which is given by:

ALL =
∆σp+p→π

0+X

σp+p→π0+X
(1.44)

=
Σfa,b=q,q̂,g∆fa ⊗∆fb ⊗∆σ̂a+b→c+X ⊗Dc

h

Σfa,b=q,q̂,gfa ⊗ fb ⊗ σ̂a+b→c+X ⊗Dc
h

(1.45)

=
σ++ + σ−− −

(
σ+− + σ−+

)
σ++ + σ−− +

(
σ+− + σ−+

) (1.46)

Experimentally, ALL is calculated as:

ALL =
σ++ − σ+−

σ++ + σ+−
(1.47)

=

(
N++

ε++
bias

ε++
accεreco

)
L++ −

(
N+−

ε+−
bias

ε+−acc εreco

)
L+−(

N++

ε++
bias

ε++
accεreco

)
L++ +

(
N+−

ε+−
bias

ε+−acc εreco

)
L+−

, (1.48)

where

σ =
NCorrected

L
. (1.49)

where L is the recorded luminosity. NCorrected is the yield corrected with the efficiencies in

reconstruction (εreco), trigger bias (εbias) and detector acceptance (εacc). A polarized proton

accelerator offers a unique environment where ε++ = ε+− so we use a simpler formula to get

ALL

ALL =
1

PY PB

N++

L++ − N+−

L+−

N++

L++ + N+−

L+−

. (1.50)

where PB and PY are the polarization of the two beams at RHIC. Since the beams at RHIC

are not completely polarized, these values are used to normalize the measured asymmetry to

get the physics asymmetry. Also, L++ (L+−) are the relative luminosity for same (opposite)

helicity.
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1.4 Neutral Pion ALL

In this thesis, we focus on measuring the ALL of π0’s, as given in Equation 1.50. The

π0 is dominantly produced in p + p collisions and the PHENIX central arms are designed

to detect its decay photons. The fractions of π0 produced from the three possible partonic

interactions in p+ p collisions: gluon-gluon (gg), quark-gluon (qg) and quark-guark (qq) are

shown in Figure 1.9. From this Figure, it is seen that the scattering processes that include

gluons (qg) are dominated in the accessed kinematic region.

Figure (1.9) Relative fraction of π0 production as a function of pT in p+ p collisions at mid-
rapidity. The solid red (online) represents the contribution from the gluon-gluon scattering,
dashed black represents the contribution from the gluon-quark scattering and dotted green
(online) represents the contribution from the quark-quark scattering. The figure is from [52].
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CHAPTER 2

EXPERIMENT

The double helicity asymmetry, ALL, measurement is performed at the Relativistic

Heavy Ion Collider, RHIC, using the PHENIX detector. In this chapter, the RHIC com-

pound and the PHENIX detectors used to measure ALL will be presented. RHIC provides

collisions of polarized protons at six interaction points among which only PHENIX and

STAR are currently operational. BRAHMS and PHOBOS are two smaller special-purpose

detectors which have completed their physics goals and are now dismantled.

2.1 Relativistic Heavy Ion Collider (RHIC) Complex

The RHIC facility at Brookhaven National Laboratory (BNL) enables studies of nuclear

phenomena and the proton spin structure. This is accomplished via collisions of light and

heavy ions, and polarized protons. The main goal of the polarized proton collisions at RHIC

is to understand the source of the spin of the proton.

RHIC is the first and only polarized proton-proton collider to study the polarized proton

structure. RHIC consists of two intersecting storage ring synchrotons called Blue and Yellow.

There are as many as 120 polarized proton bunches which can be accelerated to an energy of

255 GeV per proton. The rings intersect in 6 locations among which PHENIX is located at

the 8 o’clock position of the RHIC ring. In the 2013 run, RHIC was typically operated with

109 out of 120 bunches filled in each ring. RHIC collides specimens like Au - Au, Cu -Cu,

Cu - Au, d - Au and U - U to create high density and temperature, and explore a regime

of the possible deconfinement of quarks and gluons in the colliding nuclei [25]. The protons

scatter as beams of polarized quarks and gluons after the intense beams of polarized protons
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collide. The outline of RHIC is shown in the Figure 2.1. RHIC complex also consists of a

Linear Accelerator (LINAC), Booster, Alternating Gradient Synchroton (AGS) and Siberian

snakes, some of which are relevant to our analysis are discussed in coming section. More

detail information about RHIC can be found in [25].

Figure (2.1) Sketch of the Relativistic Heavy Ion Collider complex including AGS Booster,
the AGS, and the RHIC [25].

2.1.1 Polarized Proton Source and Booster

To study the spin structure of the proton, it is necessary to generate a beam of polar-

ized protons. Polarized protons are generated by Optically Pumped Polarized H1− Source

(OPPIS). The OPPIS produces a 400 µs pulse of 1012 nuclearly polarized H1− atoms with

35 KeV of kinetic energy. First, 3 KeV unpolarized protons (H1+) pass through an optically

pumped rubidium gas in a 4T magnetic field producing a beam of electron-spin polarized H0

and un-reacted H1+ atoms. The H1+ ions are swept from the atomic beam by deflector plates

and then the electron spin is transferred to the proton through a Sona transition [26]. The
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Sona transition adiabatically brings the magnetic field from large positive to large negative

values with a rapid jump between ± 1 gauss. Due to this rapid jump, the atoms also jump

from electron-spin polarized atoms to nuclearly polarized atoms. After that, the beam is

passed through a Na-jet vapor cell to facilitate acceleration of H1− atoms. The atoms are

then accelerated by a radio frequency quadrupole to 750 KeV. This polarized proton beam

is now injected into LINAC and then to Booster.

2.1.2 LINAC

The LINAC includes ion sources, a radiofrequency quadropole, and nine accelerator

radiofrequency cavities spanning the length of a 459 foot tunnel. The LINAC produce a

H1− beam of up to 200 MeV energy and 135 µampere current and injects the ions into the

Booster.

2.1.3 From Polarized Proton Source to Accelerator

After the polarized protons beam is produced from an optically pumped polarized H

source (OPPIS) with a polarization of ∼80% and accelerated via the LINAC, the beam is

injected into a low energy booster. Proton bunches are injected into the Alternating Gradient

Synchrotron (AGS) from the booster ring with proton energy of 2 GeV. The bunches are

then accelerated to ∼ 24.3 GeV, and then injected into RHIC. There are many depolarizing

resonances during the ramp in the AGS, and so controlling the polarization is very important

for achieving high polarization in RHIC. In order to retain the polarization of the protons,

sets of helical dipole magnets called Siberian snakes are used. The Siberian snakes are

discussed in the next section. Due to the small size of the AGS, and the lack of straight

sections in which a full Siberian snake can be inserted, there are no full Siberian snakes in the

AGS. An 80% polarized proton source (H−, to greatly improve the injection efficiency) feeds

a series of accelerators. The AGS accelerates the protons to 24.3 GeV prior to injection into

the two counter-rotating accelerator/storage rings of RHIC, indicated by blue and yellow

rings.
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2.2 Beam Instrumentation

2.2.1 Siberian Snakes and Spin Rotators

When the beam rotates through the storage ring, it loses the polarization. In order to

preserve the polarization of the beam, Siberian snakes are used. There are two full snakes

in each ring in RHIC, and their positions are shown in Figure 2.2. To understand this effect

Figure (2.2) View of RHIC ring showing the location of the Siberian Snakes and the spin
rotators placed around the collider experiments STAR and PHENIX. The polarization direc-
tions around the rings and around the detectors for collisions with longitudinal polarization
are also shown [17].

the concept of the Lorentz force equation for the motion of particle in external magnetic
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field is introduced which is given by:

d~v

dt
= −

( e

γm

)[
~B⊥
]
× ~v, (2.1)

where e and m are the charge and mass of the particle respectively, and γ is the ratio of the

electric field to the mass of the particle. If we consider the spin of the particle in an external

magnetic field, the equation of motion is given by the Thomas-BMT equation [28]

d~S

dt
= −

( e

γm

)[
Gγ ~B⊥ + (1 +G) ~B‖

]
× ~S, (2.2)

where G = 1.7928 is the anomalous magnetic moment of the proton and B‖(⊥) is the mag-

netic field parallel (perpendicular) to the particle’s motion. G γ gives the number of full spin

precessions for every revolution and is also called the spin tune, vsp. At top RHIC energies,

vsp reaches about 400 [29]. The resonance effect from spin precession frequency and the

frequency of the perturbation of the spin due to the magnetic field cause the depolarization

of the protons. There are two main types of spin resonances corresponding to the possible

sources of such fields: imperfection resonances, which are driven by magnet errors and mis-

alignments, and intrinsic resonances, driven by the focusing fields. The strengths of both

types of resonances increases with beam energy.

If there is some imperfection in the magnetic field at a given point in the ring it will

perturb the precessions which eventually add constructively over multiple orbits and degrade

the overall polarization of the beam. This is termed as ”imperfection resonance”. The im-

perfection depolarizing resonances arise when vsp = Gγ = n, where n is an integer.

During the circulation of the beam, it periodically deviates from its design orbit which is

termed as betatron oscillations. Such deviations of the beam cause a depolarizing resonance

when the spin tune matches the betatron oscillations or is an integer multiple of the magnetic

lattice spacing (periodic placement of magnets around the ring, also called RHIC lattice).
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This type of resonance is referred to as an ”intrinsic resonance”. The intrinsic resonances

arise when vsp = Gγ = kP ± vy, where k is an integer, vy is the vertical betatron tune and

P is the superperiodicity.

The use of Siberian Snakes: To maintain polarization during the acceleration pro-

cess, two full “Siberian snakes” are inserted on opposite sides of the RHIC lattice for each

of the two counter-rotating rings. In addition, other magnetic components - spin rotators -

are also located on each side of the two major interaction points which allow the spin orien-

tation to be altered from the vertical direction to the horizontal direction. Superconducting

magnets are used in order to contain the magnetic elements for a snake within a 10 m longi-

tudinal space so as to fit within the available room in the RHIC lattice. Four right-handed

helical dipole magnets, each 2.4 m long and operating near 4T or less can produce a Siberian

snake. These dipoles create a field perpendicular to the spin vector, rotating the direction of

the spin vector. If the vector is flipped 180◦, then it is called the full snake. In the ideal case,

a set of Siberian snakes precess the polarization vector by 180◦ per revolution as shown in

Figure 2.3. The effect of this is to ensure that in any two revolutions, precessions of the spin

Figure (2.3) The polarization direction and path of a polarized proton bunch passing through
a full Siberian snake [17].

vector due to resonances cancel. If the spin vector precession is not 180◦, multiple orbits

are needed to cancel out depolarization effects. These depolarization effects may not fully
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cancel if the beam is accelerating during these multiple orbits. Detail of the Siberian snakes

and their uses are explained in [27].

2.2.2 RHIC Polarimeters

In order to measure the polarization of the proton beams at RHIC an atomic beam

source hydrogen gas jet (H-Jet) and proton-Carbon (pC) polarimeters are used which are

located at 12 o’clock area in the RHIC ring.

pC-Polarimeter: Among the two polarimeters used in polarization measurements at

RHIC, one is the pC-polarimeter which relies on proton-Carbon (pC) elastic scattering. Two

sets of identical pC-polarimeters are placed in the yellow and blue rings where the rings are

separated. Figure 2.4 shows the schematic diagram of the pC polarimeter. Six silicon sensors

are mounted in a vacuum chamber at 45◦, 90◦, 135◦ azimuthally in both left and right sides

with respect to the beam as shown in Figure 2.4. Due to its high rates (2 million events in 1

s), it is used at RHIC for multiple measurements over the course of every fill to measure fill by

fill polarization. However, the analyzing power is not directly measured, this measurement

is only relative, and carries a large uncertainty (31% relative error per beam). In order to

reduce this uncertainty another polarimeter called H-Jet is used to measure the absolute

polarization.

H-Jet Polarimeter: The H-Jet polarimeter is used to measure the polarization of

both beams and is located at the collision point. At first, hydrogen gas is polarized and

ionized, and passed through the beam pipe, where it scatters from the beam. A polarimeter

called a Breit-Rabi polarimeter (lower part in Figure 2.5) is used to measure the polarization

after the beam exits the beam pipe. Molecular hydrogen can form after the H-Jet passes

through the apparatus causing the dilution of the polarization. The outline of the H-Jet

polarimeter used in RHIC is shown in Figure 2.5. Details of the H-Jet polarimeter are

explained elsewhere [74].



33

Figure (2.4) Beam view of pC polarimeter. The center is the carbon target and the beam
is incident into it. Recoil Carbon atoms are measured with 6 silicon strip detectors (red)
online [74].

Figure (2.5) General layout of H-Jet polarimeter. This figure is taken from [74].
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From the H-Jet, the polarized protons are scattered at nearly perpendicular angles to

the beam direction. To measure the left right asymmetry of the beam, a set of three silicon

detectors sit on each side of the beam perpendicular to both the beam and H-Jet axis.

Since H-Jet is polarized, both target and beam asymmetries are measurable. This allows to

measure the polarization absolutely. However, due to the low rate of this detector, many

fills are required to achieve the lower uncertainties in the measurements. Both H-jet and pC

are used for polarization measurements but H-jet target gives polarization information once

per fill while pC gives several values, hence, H-jet is used to normalize the pC polarimeter.

2.2.3 Spin Rotators

In order to measure ALL, longitudinal polarization of the proton beams is required.

However, the stable direction for polarization at RHIC is vertical. Therefore, a set of four

helical dipole magnets are used to rotate the polarization vector from the vertical axis to the

horizontal axis. These dipole magnets are placed on each side of the PHENIX interaction

point. The spin rotators have the same design as that of the Siberian snakes but the mag-

netic field strength of each component of helical dipole as well as degree of rotation of the

polarizaton is different. Instead of causing a 180◦ rotation about the polarization axis, the

spin rotators change the polarization direction from vertical to horizontal before collision.

After collision, the beam polarization is reverted back to its original direction of polarization.

2.2.4 Different Spin Patterns used in Run 13

The polarization pattern for the beam bunches in RHIC is controlled and formed of

different possible combinations (+ +,+ -, - + and - -). These patterns can collide at PHENIX

within four filled crossings. During run 13, initially there were 8 different spin patterns P1,

P2, P3, P4, P5, P6, P7 and P8, but at the later part of the run they are recombine to

get different spin patterns. In order to distinguish them from the original patterns, they

were named as P21, P22, P23, P24, P25, P26, P27 and P28. The list of patterns with the

associated helicity is given in the Table 2.1.
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Table (2.1) The different spin patterns used in run 13.

Spin Pattern Beam Patterns Helicity

P21
BLUE + + - - + + - - + +

YELLOW - - + + + + - - - -

P22
BLUE + + - - + + - - + +

YELLOW + + - - - - + + + +

P23
BLUE - - + + - - + + - -

YELLOW - - + + + + - - - -

P24
BLUE - - + + - - + + - -

YELLOW + + - - - - + + + +

P25
BLUE - - + + + + - - - -

YELLOW + + - - + + - - + +

P26
BLUE - - + + + + - - - -

YELLOW - - + + - - + + - -

P27
BLUE + + - - - - + + + +

YELLOW + + - - + + - - + +

P28
BLUE + + - - - - + + + +

YELLOW - - + + - - + + - -

2.3 PHENIX Detector

The PHENIX detector is a large general purpose detector which is located at the 8

o’clock position of the RHIC ring. It consists of two central arms at midrapidity, shown in

the upper frame of Figure 2.6, and two muon spectrometers at forward rapidity, shown in

the lower frame of Figure 2.6. The PHENIX detector also includes the beam beam counters

(BBC) and zero degree calorimeters (ZDC) which can be seen in the lower frame of Fig-

ure 2.6.

For this analysis, the two central arms, the beam-beam counters, and the zero degree

calorimeters are used and are discussed in the subsequent sections.
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Figure (2.6) Layout of Phenix Detector. Top is the central arm and the bottom is the muon
arm.
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2.3.1 Central Arm Detectors

The central (east and west) arms consist of several subsystems for tracking, particle

identification, and energy measurements. Each cover a pseudorapidity1 range of | η | < 0.35

and have azimuthal coverage of ∆φ =π
2
. From a radius between 2 and 5 m outside the mag-

netic field region, there are several tracking and PID detectors that are not used in this work

and will not be described here. There is a thin multiwire proportional chamber called the

pad chamber (PC3) which is approximately at 5 m from center. PC3 is immediately followed

by an electromagnetic calorimeter (EMCal). EMCal are used for energy reconstruction and

event triggering.

Electromagnetic Calorimeter (EMCal) The PHENIX Electromagnetic Calorime-

ter (EMCal) is used to measure the spatial position and energy of electrons and photons

produced in heavy ion and p + p collisions. It covers the full central arm acceptance of | η

| < 0.35 [31]. It is also used in triggering. The EMCal system can trigger on rare events

with high transverse momentum photons and electrons [31].

The EMCal consists of 6 sectors among which four are in the west arm and two in the east

arm. The EMCal is comprised of two types of calorimeters: Lead Scintillator (PbSc) and

Lead Glass (PbGl) calorimeters as shown in Figure 2.6.

PbSc Calorimeter All the west arm sectors and two of the east arm are made of PbSc

calorimeters. The PbSc electromagnetic calorimeter is a shashlik type sampling calorimeter

made of alternating tiles of Pb and scintillator called cells which consists of 15552 individual

towers and covering an area of approximately 48 m2. These cells are optically connected by

36 longitudinally penetrating wavelength shifting fibres for light collection. Light is read out

by 30 mm FEU115M phototubes at the back of the towers. Four towers are mechanically

1A commonly used spatial coordinate describing the angle of a particle relative to the beam axis. Its
value will be maximum along beam direction and minimum perpendicular to beam direction
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grouped together into a single structural entity called a module. 36 modules are attached

together by welded stainless steel skins on the outside to form a rigid structure called a

supermodule. Eighteen supermodules make a sector with a dimension of 2 × 4 m2 plane.

Details of the design can be found in [31]. The energy resolution is given by

σE
E

= 2.1%⊕ 8.1%√
E
. (2.3)

PbGl Calorimeter The PbGl calorimeter modules in the east arm consist of 9216

individual towers as shown in Figure 2.6. The PHENIX Time-of-Flight (TOF) system is

located on the PbGl sectors. Each PbGl module is 40 mm × 40 mm × 400 mm in size.

Each sector comprises 192 supermodules (SM) in an array of 16 SM wide by 12 SM high.

The PbGl modules within a SM are individually wrapped with aluminized mylar and shrink

tube [31], and 24 modules are glued together with carbon fiber and epoxy resin to form a

self-supporting SM with a shared calibration system. The energy resolution for the PbGl

calorimeter is given by

σE
E

= 0.8%⊕ 5.9%√
E
. (2.4)

The use of two different technologies (detectors) within the same experiment by

PHENIX was done deliberately as they increase the confidence level of the physics results

because of different systematics of the two detectors. This also helps in producing indepen-

dent cross checks of results within the same experiment.

2.3.2 Beam-Beam Counters

The Beam-Beam Counter (BBC) consists of two identical sets of counters installed on

North and South sides of the the interaction region along the beam direction and named

as BBCN and BBCS, respectively [30]. The BBC’s are at ± 144 cm from the center of

the interaction region and surround the beam pipe covering a pseudorapidity coverage of

3.0 < | η | < 3.9 over the full azimuth. Each counter is composed of 64 one-inch diameter
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mesh-dynode photomultiplier tubes (Hamamatsu R6178) equipped with 3 cm quartz on the

head of the PMT as a Čerenkov radiator. The outer diameter of the BBC is 30 cm and the

inner diameter is 10 cm. For this configuration the expected number of charged particles for

a central Au - Au collision at 200 GeV is expected to be 15 particles per BBC element. In

order to monitor and calibrate the drift of the timing for the ToF measurement, a laser signal

which is used by the ToF and Electromagnetic Calorimeter (EMCal) calibration systems, is

also delivered to individual BBC elements. The BBC system has 8 high voltage channels

for each side. In order to maintain the system of low temperature, an air flow of 200 l
min

is

used to cool the BBC. The BBC readout electronics chain consists of discriminators, shaping

amplifiers, time-to-voltage converters (TVC) and flash ADC’s (FADC). The BBC provides

the Local Level 1 (LL1) trigger with an input signal thus the timing and pulse height of

BBC elements are digitized during each beam crossing by the TVC and FADC and stored

at the same time in the buffer memory. The timing achieved for a single element was 52

± 4 ps. During the first year of operation, a ToF resolution of 96 ps was obtained. Detail

explanation of the BBCs is given in the Ref. [30]. The Beam-Beam counter is primarily used

for the following purposes:

• Provides the time of beam-beam collisions for the ToF measurement.

• Provides a signal for the PHENIX LVL1 trigger.

• Measures the collision vertex point (ZVTX) along the beam axis.

2.3.3 Zero Degree Calorimeter and Shower Max Detectors

The RHIC Zero Degree Calorimeters (ZDC) [32] are hadron calorimeters used to detect

neutrons emitted within a cone of 2 milliradians from the beam axis along both beam direc-

tions and measure their total energy. These evaporated neutrons are usually produced from

both beam and target nuclei during high energy collisions of nuclei. The ZDC’s are used for

luminosity determination at all four interaction points around RHIC. The ZDC’s are also

used for event triggering and to calculate multiplicity. The neutron multiplicity is correlated
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with the event geometry and thus the ZDC’s are used to measure collision centrality in beam

interactions. The mechanical design of the tungsten modules of ZDC’s is shown in Figure

2.7. The PHENIX Shower Max Detectors (SMD) are layers of position sensitive hodoscopes

Figure (2.7) Mechanical design of the Tungsten Modules of Zero Degree Calorimeter [32].

sandwiched between the first and second module of the ZDC’s. Since photon showers are

concentrated in the first module of ZDC, the showers shown in the SMD’s are primarily due

to neutrons. The purpose of the SMD is to measure the centroid of showers in the ZDC in

2 coordinates-x and y. The first SMD layer has 21 strips of 0.5 cm×0.5 cm scintillators each

with wavelength shifting fiber readout. Groups of 3 fibers are read out by a single channel

of a multi-anode PMT. The total width of the SMD, 10.5 cm, is subdivided into 7 samples.

Similarly, the vertical coordinate has 8 elements of 4 scintillator strips. The ZDC as well

as SMD are used in systematic error studies in the calculation of relative luminosity along

with the measurement of polarization direction on a fill by fill basis which will be discussed

in next chapter.
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2.3.4 EMCal RICH Trigger

To record events containing a π0 with high transverse momentum (pT ), a photon trigger

with high energy threshold is used. A basic trigger tile is a group of 2×2 EMCal towers and

if some energy deposited is above a threshold in one tile, then the event will be triggered.

If a high energy particle lies at the edge of a tile, the threshold will not be met for any one

individual tile. Thus to reduce loss at the edge of a tile, 2 × 2 tiles are overlapped to form

a 4 × 4 tower trigger. For Run 13 π0 analysis at center of mass energy of 510 GeV, we used

three triggers with three different thresholds. The three triggers: 4×4a, 4×4b and 4×4c

having the threshold energies of 4.7 GeV (3.7 GeV), 5.6 GeV (4.7 GeV) and 3.7 GeV (3.7

GeV), respectively, for PbSc (PbGl) were used. The different energy threshold values for

PbSc and PbGl are due to difference in their energy resolutions.

2.4 Tracking

PHENIX has pad chambers (PC) detectors in each arm at varying radii for the tracking

of charged particles. The construction and performance of the PHENIX PC are given in

Ref. [73]. The PC, as shown in Figure 2.6, consists of three stations (PC1, PC2 and PC3)

and covers a total area of 88 m2. The PC have the following specifications:

• Provide reliable track information with an accurate coordinate in the z direction (par-

allel to the beams) and good position resolution in the ϕ direction.

• Define entry and exit coordinates of the particle identification subsystems, mainly the

RICH and the EMCal.

• Help separate neutral EMCal showers from charged tracks.

• Help in vetoing the charged tracks that produce energy in the EMCal.

PC2 and PC3 also play important roles in particle identification. In this analysis, PC3,

which is located in front of the EMCal, is used. It helps in identifying the charged particles
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entering the EMCal. The cells in the PC3 are 1.7 × 1.7 cm2, which is significantly smaller

than the position resolution of any EMCal tower. The two dimensional position resolution

depends on whether a hit is contained within a single cell or split between two cells. If the

hit is contained within a single cell, the resolution is simulated at 4.9 mm along the direction

of the wires, and 6.1 mm across the wires. If the hit is split between two cells, the resolution

improves and is 3.2 mm along the wires and 4.8 mm across [73].

2.5 Data Acquisition System

The PHENIX DAQ can write data at maximum rate of 700 MB/s. Data flows from

each subsystem’s front-end electronics in the interaction region over fiber optic cables to

data collection modules (DCM) located outside the interaction region. After this, the data

are passed to the Sub Event Buffers (SEB) and subsequently to the Assembly and Trigger

Processor (ATP). The ATP’s assemble the event’s data from the individual subsystems and

pass the data to one of a series of buffer boxes for archiving. The buffer boxes are composed

of seven machines each with 15 terabytes of hard-drive space. All machines are written to in

parallel, but each one’s capacity is split into four filesystems: a, b, c and d. During normal

operations data is written in sequence to a, b, c, d and then starts again at a. Swaps between

filesystems are done once a filesystem reaches maximum capacity. After a swap, data are

immediately copied to a tape robot with multi-petabyte storage capacity. The computing

facility which houses this tape robot is called the RHIC Computing Facility (RCF). The RCF

facility maintains a computing farm of several thousand machines used for reconstructing

and analyzing data and a smaller set of machines for interactive use. Data are written to

the buffer box in a binary format called Phenix Raw Data File (PRDF). The PRDF internal

structure is based around a packet ID unique to each data collection module. After the data

have been copied, it is safe to delete them from the buffer box but it is not done until the

last possible moment. The data are kept locally on the buffer boxes for about twelve hours.

This allows quick analysis of the data. Two types of analyses are done. The first is called

online monitoring. It produces a simple but fast display of each detector’s performance.
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These plots are monitored by the shift crew all the time during RHIC run. The online

monitoring of the detector performance plots are designed in such a way that any problems

can automatically alert the shift crew. The second type of analysis is online calibration.

Online calibration gives the subsystem experts a first iteration on calibrating their detector,

and helps in speeding up their analysis. The performance of the particular subsystem can

be easily tracked by the subsystem experts with the online calibration.
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CHAPTER 3

DATA ANALYSIS

This chapter provides a detailed description of the data analysis. It includes the various

analysis tools and techniques, the calibration procedures, the rates and the particle identifi-

cation cuts. The last part of the chapter is dedicated to π0 reconstruction and asymmetry

calculations.

3.1 Quality Assurance (QA) of Data

In order to analyze qualitative data, any problem in the data sets should be identified

and must be removed for further analysis. At first we checked the Data Acquisition (DAQ)

time to see if there are any runs1 which are terminated earlier than normal. After that we

check the spin database to see if there are any problems with the polarization information.

3.1.1 Data Acquisition (DAQ) Condition

Two DAQ tests are used to select good runs. First is the DAQ time. Runs that

are shorter than 10 minutes are rejected because there might be some problem with the

DAQ which caused early termination of the run. Second is the live-time of the BBCLL1,

ERT 4X4A, ERT 4X4B and ERT 4X4C triggers. The live-time of these triggers must be

larger than 50%. There can be one or more problems in the run if the live-time of the

triggers is below 50%.

3.1.2 Spin Database

The spin database at PHENIX contains the runs that pass the spin-related QA tests.

These tests include no clear crossing shift, strange spin patterns and problems with the

1Segment of data recorded within sixty to ninety minutes.
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scaler2 values like high scalers, empty scalers or noisy scalers. Runs with run numbers:

386825, 387557, 387558 and 390038 do not have clear crossing shift and also there is huge

fluctuations. Runs 387247, 391170, 391818, 392096-392100, 392218-392223, 393798, 394525,

394528, 3945318 do not have the scaler values. Similarly, runs 395775, 396785, 391966-

391970, 394389-394391, 391288-3912968 have either noise scalers or high values with large

fluctuations. These runs are excluded from this analysis.

3.1.3 Polarization

A minimum of 10% polarization on both beams is required to pass run QA. Any run

that has polarization value below 10% is an outlier since this value is much lower than the

average value, which is ∼55% for each beam. Therefore, these runs are removed in this

analysis.

3.2 EMCal Calibration

After the basic QA is done, the next step is the energy calibration of EMCal. The energy

calibration is done using the π0 peak position in the di-photon invariant mass spectrum for

each of the EMCal towers. At lower transverse momentum (pT below 5 GeV), the mass of

each π0 candidate is below the mean mass of π0 which is ∼135 MeV [36]. Similarly, at higher

transverse momentum (pT above 8 GeV) the mass of each π0 candidate is above the mean

mass. In order to correct this, the following procedure is followed: First, the cluster energy

for a given tower is multiplied by 137 MeV3 and then divided by the π0 peak position. This

corrects the π0 peak position to around 137 MeV/c2. Additionally, if the π0 invariant mass

spectrum for any tower in any run is abnormal, the corresponding tower is marked as bad

and removed for further analysis.

2RHIC has scaler board designed to record counts at a 10 MHz rate to correlate the fast detector data
with the bunch number information to uncover the spin dependence of different signal combinations.

3Due to detector smearing effect, the mass of π0 is 137 MeV/c2 instead of 135 MeV/c2
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3.3 Event Selection

The primary task of the data analysis is to identify the photon pairs that are coming

from π0 decays. However, there are several other sources from which photon pairs can

be produced. These photons contaminate the π0 signal. We estimate these sources of

background by applying the following selection conditions and cuts on the event level.

• Trigger requirement: At least one of the triggers (ERT 4x4A, ERT 4X4B and

ERT 4X4C) must be present in the event. Similarly, the cluster with higher energy

should have the ERT 4X4C trigger. The leading photon of the di-photon pair is re-

quired to be in the triggered supermodule.

• BBC z-vertex requirement: The reconstructed vertex along the beam axis for the event

should have values between ± 30 cm of the center of the interaction region.

3.4 Cluster Rejection Due to Electronic Noise

There are two methods used to reduce the effects due to electronic noise. One is the

use of a minimum energy cut and the other is the warnmap. Both of them are discussed in

following sub-sections.

3.4.1 Minimum Energy Cut

The first method to reduce the effects caused by electronic noise is to exclude very

low energy clusters by applying a higher threshold on the energy of the cluster. Since the

center of mass energy for collision is high, we applied a minimum energy cut of 300 MeV for

both PbSc and PbGl. This cut has a very small effect on the signal but have dramatically

reduces the background under the π0 peak especially at low pT . At high pT , only decays

with very asymmetric energies are cut. This energy asymmetry should be independent from

the partonic distributions in the proton in the initial state. Thus, this cut will not bias the

spin asymmetry measurement. Due to insignificant effect in the asymmetry measurement,

the energy asymmetry cut is not applied.
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3.4.2 Warn/Deadmap

Since hot or noisy towers can make the combinatorial background large, those towers

are excluded in the analysis. To find such hot towers, hits per tower distribution is used

such that if the number of hits per tower is greater than the average of all towers plus one

standard deviation, the tower is masked and labeled as a hot tower. Similarly, if the tower

doesn’t have any hits, it is masked and labeled as dead tower. The uncalibrated and edge

towers are also excluded. Towers which are neighboring a hot, dead or uncalibrated tower

are also excluded. In addition, in order to prevent the analysis of a cluster centered on a

good tower that extends into a bad tower, the adjacent towers to a masked tower are also

excluded from the analysis because a typical photon shower is no more than three towers in

diameter. Table 3.1 shows the number of hot, dead, and uncalibrated and edge towers that

are masked.

Table (3.1) Number of non-edge (hot, dead and uncalibrated) and edge masked towers from
“Or” triggered data. The number in the parenthesis is the percentage of the total. W0 to
W3 are the sectors in west arm and E0 to E3 are the sectors in east arm.

sector masked non-edge towers masked edge towers total towers
W0 2 (0%) 416 (16%) 2592
W1 39 (2%) 416 (16%) 2592
W2 46 (2%) 416 (16%) 2592
W3 60 (2%) 416 (16%) 2592
E0 88 (2%) 560 (12%) 4608
E1 74 (2%) 560 (12%) 4608
E2 65 (3%) 416 (16%) 2592
E3 60 (2%) 416 (16%) 2592

PbSc 272 (2%) 2496 (16%) 15552
PbGl 162 (2%) 1120 (12%) 9216

Total 434 (2%) 3616 (15%) 24768
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3.5 π0 Reconstruction

After the selection of events, the π0 invariant mass distribution is obtained by combining

photon pairs according to the following equation,

m2
γγ = E1 · E2 − (p1 · p2), (3.1)

where p1 and p2 are the momenta of each photon and E1 and E2 are their energies. In terms

of the angle between the decay photons, the invariant mass can also be written as:

m2
γγ ≡ 2E1E2(1− cos θ), (3.2)

where E1 and E2 are the energies of the two clusters and θ is the angle between the two

vectors from the decay vertex to the EMCal clusters.

3.6 Di-photon Cuts

After the spin related QA is done, several cuts are applied to reduce the combinatorial

background under the π0 peak in the di-photon invariant mass spectrum. These cuts include:

Global Energy Calibration: The EMCal reconstruction algorithm neglects contri-

butions from towers with an energy below a set cutoff. Therefore, the reconstructed clusters

will be missing small amounts of energy from those towers where the energy deposition was

below this cutoff. The correction for these effects is parameterized as,

EPbSc
final =

EPbSc
Calib

0.003 + (1− 0.01
EPbSccalib

)
, (3.3)

for PbSc and,

EPbGl
final =

EPbGl
Calib

0.021 + (1− 0.02
EPbGlcalib

)
, (3.4)
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for PbGl.

Minimum pT : Only π0 candidates which have pT > 2 GeV/c are considered for this anal-

ysis because there is large background which dilutes the π0 signal below 2 GeV/c.

Shower Shape Cut: In the EMCal photons, electrons as well as hadrons produce a shower.

Photons and electrons interact with material electromagnetically while hadrons interact with

material via strong interaction. Hence, the two interactions produce different shower shapes

which allows isolating photons and electrons from hadrons. The shower shape of the clus-

ter is determined in terms of photon probability which is characterized by the variable

“prob photon”. In this analysis, all clusters that have probability of being electromagnetic

greater than 2% are included. i.e.,

prob photon > 0.02. (3.5)

Time of Flight Cut: The time of flight (ToF) of a particle associated with an energy

cluster in the EMcal is defined as

ToF = timeEMCal − timeBBC (3.6)

where timeEMCal is the time difference between RHIC clock and the time the particle hits the

EMCal, and timeBBC is the time difference between RHIC clock and the time the collision

occurs, as determined by the BBCs. The ToF of an EMCal tower is calibrated in such a way

that the ToF peak of photons is centered at zero. We choose the time of flight range between

-15 to +15 nano seconds for PbSc and -10 to +10 nano seconds for PbGl. Figure 3.1 shows

the average time of flight (TOF) distributions from which it is seen that the average TOF is

below 15 nano seconds for all runs. ToF cut is applied to all cluster to reject “ghost” cluster

which is cluster of photons from previous events. Because clusters from previous events will

be unassociated with the current event thus they will have a wide ToF distribution centered

at different values of ToF as shown in left panel of Figure 3.1. The small bump at the right

side of the left panel in Figure 3.1 is due to this “ghost” clusters. After the ToF cut is
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applied, the corrected distribution is shown in the right panel of Figure 3.1.

Charge Veto Cut: Another method of reducing charged hadron contamination is to apply
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Figure (3.1) Time of flight distribution before and after applying the cuts.

a veto on clusters associated with charged tracks. For this, we look for hits in the PC3, which

is about 20 cm closer radially to the z-axis than the EMCal. We define two vectors: the first

from the vertex (0, 0, zBBC) to the cluster position in the EMCal, and the second from the

vertex to the nearest hit in the PC3. The angle between these two vectors is defined as θcv.

The values of charge veto angle θcv are divided into three regions (“small”,“medium”, and

“large”), which can be identified in following manner:

1. Small θcv: Electron positron pairs from photon conversions outside of the magnetic

field region can still form a single cluster if their opening angle is small relative to the

conversion’s distance from the EMCal. In this case we may find an associated PC3

hit directly in front of the cluster, but we can still accurately reconstruct the original

photon from the energy deposited. Thus we would like to retain these events.
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2. Medium θcv: For hadrons that travel through the inner magnetic field region, it is not

possible to draw a straight line connecting the EMCal cluster, PC3 hit and collision

vertex. Thus there will be some finite θcv associated with these particles. We would

like to exclude any such hadrons that are not already excluded by the shower shape

and ToF cuts.

3. Large θcv: The phase space for combinatorial association of an EMCal cluster with an

unrelated PC3 hit increases linearly with tan(θcv). Thus random association dominates

this region and we should not throw out these events.

The following formula is used for PbSc:

4.22×10−5+1.16×10−2Eγ−4.53×10−3E2
γ < θcv < 1.01×10−1−2.02×10−1Eγ+1.50×10−1E2

γ−3.66×10−1E3
γ

(3.7)

Similarly, the following formula is used for PbGl:

1.27×10−2−2.14×10−3Eγ+2.26×10−3E2
γ < θcv < 1.64×10−2−7.38×10−3Eγ+1.27×102e−4.00Eγ

(3.8)

Figure 3.2 shows the θcv as a function of energy of the cluster. In the Figure 3.2 the clusters

between the red and blue curves are excluded.

3.7 Relative Luminosity

The relative luminosity is calculated using the ratio of number of BBC triggered events

in the same helicity crossings to that in the opposite helicity crossings. The π0 yield for

the same and opposite helicities are normalized by the luminosity recorded by BBC. Since

the double helicity asymmetry depends on the cross-section measurement, the cross-section

of π0 indeed depends on the measured yield of π0 normalized by the luminosity. Thus,

measuring relative luminosity is an important ingredient for the calculation of double helicity
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Figure (3.2) Charge veto angle as a function of energy of cluster. Red full circles are for
large veto angle and blue empty circles are for small veto angle. The solid red and dashed
blue curves are from fit. The clusters within the two curves are excluded in this analysis.
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asymmetry. Also, the dominant source of systematic uncertainty in the calculation of double

helicity asymmetry comes from the uncertainty in relative luminosity. It is calculated for even

and odd crossing separately taking into account the difference in the even and odd crossings.

Details of relative luminosity and corresponding systematic uncertainty are explained in

Chapter 4.

3.8 Asymmetry Calculations

After applying all the cuts, the invariant mass spectrum of π0 is obtained as a function

of transverse momentum (pT ). The number of π0s with the same and opposite helicities4

of collisions (N++ and N+−) are obtained from the π0 mass spectrum. The detail of this

process is given in Chapter 5.

The double helicity asymmetry, ALL is calculated using Equation 3.9

ALL =
1

PBPY

N++ −RN+−

N++ +RN+− , R ≡
L++

L+− (3.9)

where PB(Y ) is the polarization of the blue (yellow) beam, R is the relative luminosity and

N++(N+−) are the number of π0’s obtained from the same (opposite) sign helicity collisions.

The statistical uncertainty of ALL is calculated using Equation 3.10.

σALL =
1

PBPY

2RN++N+−

(N++ +RN+−)2

√(σN++

N++

)2

+
(σN+−

N+−

)2

+
(σR
R

)2

. (3.10)

The expression for ALL written above is valid assuming that all acceptance and efficiency

corrections for the detector do not depend on helicity and crossing. This is applicable for

detector acceptance and reconstruction efficiencies as they do not change on the scale of

hundreds of nanoseconds. However, the trigger efficiency varies with even and odd crossings

as they use separate circuits. Therefore, this analysis is done using even and odd crossings

4Projection of spin along the momentum direction
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separately. Also, the combined triggers (4x4A ‖ 4x4B ‖ 4x4C) are used for data selection.

Figure 3.3 shows the invariant mass spectrum of π0. The solid red region in Figure 3.3
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Figure (3.3) Invariant mass spectrum of π0. The signal region is represented by solid red
region (0.112 ≤ Mγγ ≤ 0.162 GeV/c2). The background region is represented by shaded
blue pattern region (0.047 ≤ Mγγ ≤ 0.097 GeV/c2 and 0.177 ≤ Mγγ ≤ 0.227 GeV/c2)

is the signal region and the shaded blue pattern is the background. The solid red region

consists of π0 signal as well as background. Since this region also contains background, the

double helicity asymmetry for signal region is diluted by background. In order to remove

the background asymmetry, we use the following equation

Aπ
0

LL =
Aπ

0+BG
LL − rABGLL

1− r
(3.11)
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Here, Aπ
0+BG
LL is the double helicity asymmetry for signal region and ABGLL is for background

region. The ratio r is the fraction of the background within the signal region. In the following

section, we discuss the various components in ALL calculation.

3.8.1 Background Fraction

The background fraction is given by

r =
NBG

Nπ0+BG

(3.12)

Here, NBG is the yield in background region (blue shaded pattern area in Figure 3.3) and

Nπ0+BG is the yield in signal region (red solid area in Figure 3.3.) The background fraction

is estimated using the Gaussian process regression method which is explained in following

section.

Gaussian Process Regression The background fraction is calculated using the

Gaussian Process Regression (GPR) method. A Gaussian process is a specific type of

stochastic process where the variance of each of the random variables comprising the process

is Gaussian. In this method, the background yield within the GPR fit is divided by the

signal yield within the signal region (solid red area in Figure 3.3). This method predicts

several extrapolated/interpolated data points within the provided data at the same time.

Examples of fits using the GPR approach are shown in Figures 3.6 and 3.7 for even and odd

bunch crossings and a representative pT bin, respectively. The plot for all the pT bins are

shown in Figures ?? and ??. The background fraction obtained with the GPR method is

quite consistent with Breit Weigner (BW) fit5 method except at higher pT region where BW

method overestimate the background fraction. The fit of the invariant mass spectrum using

BW function is shown in Figure 3.4 and Figure 3.5 for even and odd crossings, respectively.

5It is the distribution of a random variable that is the ratio of two independent standard normal variables
and has the probability density function f(x;0,1) = 1

π(1+x2)
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Figure (3.4) BW method to calculate the background fraction for even crossing. Here red
dashed curve is the Gaussian + BW function and blue dotted line is the third order polyno-
mial function.
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Figure (3.5) BW method to calculate the background fraction for odd crossing. Here red
dashed curve is the Gaussian + BW function and blue dotted line is the third order polyno-
mial function.
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The comparison plots for the two different methods used to compare the background

fraction are shown in Figure 3.8 (even) and Figure 3.9 (odd).
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Figure (3.6) GPR approach to calculate the background fraction for even crossing. Here the
solid blue circles represent the invariant mass histogram, the empty green circles represent
the extrapolate/interpolate values using GPR and the red square boxes represent the input
data points.

3.8.2 Luminosity Calculations

After QA and cuts, the integrated luminosity of the remaining runs is calculated in

following manner: At first, the total live trigger count for BBCLL1(>0tubes)(novertex) for all

the runs used in our analysis is obtained from the PHENIX online database. After that the

total number of events for all the runs from offline data with minimum bias trigger ON are

obtained. For this, the BBCLL1 (novertexcut) trigger should be present. The ratio (R) of

BBCLL1 with ± 30 cm cut and BBCLL1 for all events without ± 30 cm cut were calculated
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Figure (3.7) GPR approach to calculate the background fraction for odd crossing. Here the
solid blue circles represent the invariant mass histogram, the empty green circles represent
the extrapolate/interpolate values using GPR and the red square boxes represent the input
data points.
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Figure (3.8) Comparison of the background fraction calculated by using GPR and Breit
Weigner method for even crossing as a function of pT . Here the red solid circles are from
GPR method and the empty blue circles are from the Breit Weigner method.
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Figure (3.9) Comparison of the background fraction calculated by using GPR and Breit
Weigner method for odd crossing as a function of pT . Here the red solid circles are from
GPR method and the empty blue circles are from the Breit Weigner method.



62

as follows:

R =
BBCLL130cm

BBCLL1novertex
(3.13)

The total number of events used in the analysis is calculated as:

T = Nnovertex ×R (3.14)

where Nnovertex is the total number of events with no vertex cut. Finally, the integrated

luminosity of the data used in our analysis is:

I =
T

σBBC
pb−1 (3.15)

Here, the BBC cross-section, σBBC is (32.5 ± 3.2) ×10−3 mb which is obtained using the van

der Meer scan technique [38]. This calculation shows that a 108.13 pb−1 of data are used in

this analysis.

3.8.3 Polarization

Beam polarization is an important ingredient in calculating ALL. There are two methods

in measuring the beam polarization at RHIC: proton-carbon (pC) and H-jet. Both are

explained in Chapter 2. The polarization is calculated on run-by-run basis according to the

following procedure:

1. The polarization (P0) values at the beginning of each fill (tfill) is provided by the local

polarimetry group at RHIC (https://wiki.bnl.gov/rhicspin/Run 13 polarization).

2. The rate of change of polarization as a function of time, i.e., slope (dP/dT) for the fill

is also provided by the polarimetry group.

3. The beginning time (t0) and the end time (t1) of each run are extracted from the

PHENIX database and the average time (tavg) is

tavg =
t0 + t1

2
(3.16)
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4. The polarization value at any time (t) is calculated as:

P = P0 + (tavg − tfill)
dP

dT
(3.17)

where tfill is the starting time of a fill.

Figure (3.10) Polarization calculation procedure at mid-time of the run.

The process is illustrated in Figure 3.10. Figures 3.11 and 3.12 show the polarization values

per run for the blue and yellow beams, respectively. The average polarization values nor-

malized by BBC counts with z vertex = ± 30 cm cut of the center of the interaction region

(IR) along the beam axis are 55% ± 0.001 and 56 % ± 0.001 for the blue and the yellow

beam polarization, respectively.
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Figure (3.11) Blue beam polarization as a function of run number.
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Figure (3.12) Yellow beam polarization as a function of run number.
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3.8.4 Local Polarimetry at PHENIX

As explained in Chapter 2, for the measurement of the ALL using longitudinally po-

larized beams, spin rotators are used to rotate the direction of the beam polarization from

vertical to longitudinal. In reality, there is always some remaining transverse component of

the polarization. This remaining component reduces the sensitivity of ALL, while increasing

the sensitivity of the transverse spin asymmetry ATT . Therefore, it is very important to

estimate this transverse components. The remaining transverse components are calculated

according to the following method: PHENIX records events with the spin rotator magnet off

for some time to establish a baseline measurement of the single transverse spin asymmetry

(AN)6 of forward neutron production with the ZDCs. When the spin rotators are turned on

for longitudinal running, the remaining component ratio, fT of each beam is

fT ≡
PT
P

=
AN,rotators on
AN,rotators off

, (3.18)

and the corresponding longitudinal component ratio, fL is given by

fL ≡
PL
P

=

√
1− (

PT
P

)2 (3.19)

The values of fL are found to be

fBL = 0.9999+0.0001
−0.0001(stat)+0.0000

−0.0001(syst.), (3.20)

for the blue beam and

fYL = 0.9989+0.0004
−0.0005(stat)+0.0003

−0.0001(syst.), (3.21)

for the yellow beam. With these numbers, the scale factor on our final Run 13 Aπ
0

LL is 1.001

6Particle spin ~S is perpendicular to its momentum ~p



67

with the additional global scaling uncertainty,

√(
δfBL
fBL

)2

+

(
δfBL
fBL

)2

=

√( +0.0001
−0.001

0.9999

)2

+

( +0.0004
−0.0005

0.9989

)2

=
+0.004%

−0.5%
, (3.22)

where combinining of the asymmetric uncertainty has been done by treating the + and -

errors separately and assuming the systematic error is uncorrelated between the blue and

yellow beams.

3.9 Prescales and Run-by-Run Analysis

We used three sets of triggers to select events for this analysis: ERT4x4A&&BBCLL1,

ERT4x4B and ERT4x4C&&BBCLL1 trigger. Among them the ERT4x4A&&BBCLL1 trig-

ger and the ERT4x4C&&BBCLL1 trigger were prescaled7 due to the high rate of events at

high center of mass energy collisions (
√
s = 510 GeV). This analysis is done on run-by-run

basis due to different triggers prescales in different runs.

7Due to collision at high energy, there are number of events generated. It is not possible to record all the
events so they are recorded selectively.
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CHAPTER 4

SYSTEMATIC UNCERTAINTIES AND CROSS CHECKS

In this chapter, we discussed different possible sources of systematic uncertainties. These

sources of systematic effects include the parity violating single spin asymmetry, relative

luminosity and any systematic effects from bunch to bunch or fill to fill correlations are also

discussed.

4.1 Single Spin Asymmetry

The longitudinal single spin asymmetries are parity violating and strong interactions

preserve parity and those associated with π0 production in p + p collisions are expected to

be negligible. The longitudinal single spin asymmetry, AL, is calculated according to the

following Equation:

AbeamL =
1

Pbeam

N+ −RbeamN
−

N+ +RbeamN−
, Rbeam ≡

L+

L−
(4.1)

where Rbeam is the relative luminosity of each beam, N+ (N−) are the particle yields in

collisions with the positive (negative) helicity crossings in the set beam, and Pbeam is the

polarization for that beam. The single spin asymmetries for blue and yellow beams as a

function of pT are shown in Figure 4.1 and listed in Table 4.1. The first column of Table 4.1

is the transverse momentum, the second and third columns are the single spin asymmetry

values and associated errors for the blue beam. Similarly, the fourth and fifth columns are

the single spin asymmetry values and associated errors for the yellow beam. The data show

that the AL values are negligible, and thus no associated systematic effect is assigned.
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Figure (4.1) Single spin asymmetry as function of pT for blue and yellow beams.

Table (4.1) Single spin asymmetry values for blue and yellow beams.

pT Aπ
0

L (B) ∆ Aπ
0

L (B) Aπ
0

L (Y ) ∆ Aπ
0

L (Y )
2.0-2.5 3.62e-4 1.01e-3 -1.02e-3 9.93e-4
2.5-3.0 6.07e-4 7.21e-4 -4.36e-4 7.07e-4
3.0-3.5 3.82e-4 6.36e-4 -3.44e-4 6.24e-4
3.5-4.0 1.05e-3 6.38e-4 9.07e-5 6.26e-4
4.0-4.5 6.39e-5 6.93e-4 -1.28e-4 6.80e-4
4.5-5.0 -4.99e-4 7.88e-4 2.31e-5 7.73e-4
5.0-6.0 3.43e-4 7.08e-4 -8.12e-4 6.95e-4
6.0-7.0 1.10e-3 9.92e-4 7.53e-4 9.73e-4
7.0-8.0 2.52e-3 1.39e-3 9.76e-4 1.36e-3
8.0-9.0 -2.37e-3 1.98e-3 2.81e-4 1.95e-3
9.0-10. 1.00e-4 2.71e-3 2.29e-4 2.66e-3
10.-12. -1.61e-3 2.99e-3 1.98e-3 2.93e-3
12.-15. 4.41e-3 4.68e-3 -6.80e-3 4.59e-3
15.-20. 5.19e-3 9.56e-3 -6.27e-3 9.37e-3
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4.2 Relative Luminosity

The relative luminosity is calculated as the ratio between BBCLL1 trigger counts in

the same helicity crossing to those in the opposite helicity crossing. The relative luminosity

is a dominant source of systematic uncertainty of ALL measurement. To identify the fake

asymmetry (systematic uncertainty) due to luminosity from the BBC, different corrections

like pileup, width and residual rate are studied. These corrections are used to categorically

identify the systematic uncertainty on relative luminosity calculations.

In order to test if the double helicity asymmetry is spin independent, we measure ABBCLL .

The definition of ABBCLL is

ABBCLL =
1

PBPY

N++
BBC

L++ −
N+−
BBC

L+−

N++
BBC

L++ +
N+−
BBC

L+−

, (4.2)

where N++
BBC (N+−

BBC) are the number of collisions in ’+ +’ and ’+ -’ crossings, L++ (L+−) are

the luminosities for same (opposite) helicity. We test the asymmetry results obtained from

BBC by comparing it with another detector called ZDC. ZDC is used as next luminosity

detector because it has low background and good statistics. Thus, what we measure is:

A
ZDC/BBC
LL =

1

PBPY

N++
ZDC

N++
BBC

− N+−
ZDC

N+−
BBC

N++
ZDC

N++
BBC

+
N+−
ZDC

N+−
BBC

(4.3)

The uncertainty of A
ZDC/BBC
LL includes ∆εLL from bunch fitting, which is the fitting of the

ratio of ZDC and BBC, and statistical uncertainties of each RHIC beam polarization and is

given by Equation 4.4

∆A
ZDC/BBC
LL =

1

PBPY

√
(∆εLL ×

√
χ2
re)

2 + ε2LL

(
(∆PB)2

P 2
B

+
(∆PY )2

P 2
Y

)
. (4.4)

where χ2
re is the chi-square of bunch fitting. The scaling of uncertainty of εLL is omitted until

correction parameters are fixed because it dilute the behaviour of each corrections. Without
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any correction, the ratio, A
ZDC/BBC
LL , is found to be (-2.433×10−4 ± 1.002) ×10−5 which is

shown in Figure 4.2.
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Figure (4.2) A
ZDC
BBC
LL as a function of run number. The central red line is a fit with a zeroth-

order polynomial. No corrections have been applied in this plot.

4.2.1 Pileup Correction

Due to multiple collisions and random coincidences of single diffractive events, scaler

over-counting or under-counting can occur. The scaler miss-counting is fixed by calculating

true rate for each scaler values using Equation 4.5,

Rateobs = 1− e−Ratetrue(1+kN ) − e−Ratetrue(1+kS) + e−Ratetrue(1+kN+kS) (4.5)

where kN(S) is the north (south) hit probability. The observed scaler rate is calculated by

dividing each scaler count by the Clock scaler1 counts. Then, true scaler rate are obtained

1Measure counts within specific time
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by numerically solving Equation 4.5. KN and KS can be determined with Star Scaler2. Each

KN and KS are calculated for bunch ID and run number. To remove the rate dependence

of KN and KS, the true coincident rate and exclusive rate are calculated according to the

following Equation:

RTrue
NS = ln(1−RInc.,Observed

N −RInc.,Observed
S +RObserved

NS )−ln(1−RInc.,Observed
N )−ln(1−RInc.,Observed

S )

(4.6)

and

RTrue,Exc.
N(S) = − ln(1−RInc.,Observed

N(S) −RTrue
NS ) (4.7)

where RN(S) is the north (south) rate. KN and KS are obtained by fitting with a constant

function. With the determination of KN and KS and observed scaler rates, true scaler rates

are obtained by substituting them into the the pileup correction Equation 4.5. Figures 4.3

and 4.4 show the BBC and ZDC rates. Figures 4.3 shows scaler under-counting is dominant

for BBC similarly 4.4 shows scaler over-counting is dominant for ZDC. With this correction,

the ratio, A
ZDC/BBC
LL , is found to be -5.828×10−5 ± 9.293 ×10−6. Figure 4.5 shows result of

true BBC Coin. rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o
b
s
e
rv

e
d
 B

B
C

 C
o
in

. 
ra

te

0

0.2

0.4

0.6

0.8

1

After Pileup Corretion

Before Pileup Corretion

BBC PileUp Corretion

Figure (4.3) BBC rate with and without
Pileup correction. For BBC, scaler under-
counting is dominant at high rate.
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Figure (4.4) ZDC rate with and without
Pileup correction. For ZDC, scaler over-
counting is dominant at high rate.

2There are three STAR scaler boards at the PHENIX experiment. These are used to measure raw, live
and scaled trigger. Raw triggers count the number of times a trigger fires, the live triggers count the number
of times a trigger fires when the DAQ is not busy and the scaled triggers count the number of triggers when
the DAQ is not busy and after the prescale is applied.
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run fitting with pileup correction. We observe a reduce in both A
ZDC/BBC
LL and χ2

re of run

fitting.
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Figure (4.5) A
ZDC/BBC
LL as a function of run number with pileup correction. Both A

ZDC/BBC
LL

and χ2
re are reduced compared with no corrections as shown in the Figure 4.2.

4.2.2 Width Correction

The width correction is an additional correction to scaler miscount. It is a classical way

to handle scaler miscount due to vertex cut, especially for ZDC. Due to the poor resolution

of the ZDC, undercounting by ZDC occurs which depends on the zvertex width. The narrower

the zvertex, the more undercounting occurs. Thus, we need to correct ZDC/BBC ratio by the

zvertex width. To parameterize the zvertex width, we define σproxy which is

σproxy =
ZDCout

ZDCnarrow
, (4.8)
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where ZDCnarrow = ZDC30cm and ZDCout = ZDCNoV tx - ZDCnarrow. Thus, the ratio can

be simplified as: (
ZDC

BBC

)′
=

(
ZDC

BBC

)
< ZDC

BBC
>

P0 + P1σproxy
. (4.9)

This correction is called the width correction. With the width and pileup corrections, the

ratio, A
ZDC/BBC
LL , is found to be -1.704×10−5 ± 8.794 ×10−6 as shown in Figure 4.6.
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Figure (4.6) A
ZDC/BBC
LL as a function of run number with pileup and width correction. Both

A
ZDC/BBC
LL and χ2

re are reduced compared with no corrections as shown in Figure 4.2.

4.2.3 Residual Rate Correction

The pileup correction formalism is analytic. If the BBC and ZDC coincidence triggers

have no vertex cut, the formalism works well on the data. But this formalism does not work

when a vertex cut is present. Thus, we use the residual rate correction. First, let’s define

the factor f as the fraction of crossings where a coincidence is found, real or accidental, such
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that the vertex is reconstructed within the 30 cm vertex cut.

f =
Observed30cm vertex scaler count

Observedno vertex scaler count
(4.10)

The bunch-by-bunch factor f is obtained from STAR Scaler data. The vertex cut true rate

is approximately:

Rateobs → fRateobs, (4.11a)

Rateobs = F (Rateobs), (4.11b)

Which gives:

fRateobs ∼ F(Ratetrue,vtx) where, F is the right hand side of Equation 4.5. If we solve the

above equations, Ratetrue and Ratetrue,vtx are obtained.

Ratetrue = F−1(Rateobs) (4.12a)

Ratetrue,vtx ≈ F−1(fRateobs) (4.12b)

From Equation 4.12, an additional factor appears in the relation between Ratetrue and

Ratetrue,vtx.

Ratetrue,vtx ≈ fRatetrue/Cres (4.13)

where,

Cres ≡
fF−1(Rateobs)

F−1(Rateobs,vtx)
(4.14)

Figures 4.7 and 4.8 show calculated Cres of BBC and ZDC.

The true rate is now corrected by multiplying it by Cres to get the observed vertex cut

rate.

Rateobs,vtx,residual = Rateobs,vtx × Cres (4.15)

This is called the residual rate correction. With the residual rate correction, the ratio,
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Figure (4.8) Cres of ZDC as a function of
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A
ZDC/BBC
LL , is found to be (5.610 ± 1.002) ×10−5 as shown in Figure 4.9.

4.2.4 ∆ ALL due to Relative Luminosity

From the discussion above, measured A
ZDC/BBC
LL

A
ZDC/BBC
LL = −1.026×10−4±3.762×10−5(stat.)±8.727×10−8(syst.correction±3.694×10−4(syst.pattern)

(4.16)

is obtained. The overall systematic uncertainty in Aπ
0

LL due to relative luminosity is obtained

by quadratic sum of all the three corrections and is found to be

∆ALL(Rel.Lumi) = 3.853× 10−4. (4.17)

4.2.5 Summary of Corrections

The Table 4.2 shows the summary of all the corrections while measuring the A
ZDC/BBC
LL .

4.3 Bunch Shuffling

Bunch shuffling is a systematic techinque to ensure that any systematic uncertainty

from bunch to bunch or fill to fill correlations are less than the statistical uncertainty. The

bunch shuffling technique includes randomly shuffling the helicities of the bunches used in



77

Run #
386 388 390 392 394 396 398

3
10×

L
LZ
D

C
/B

B
C

A

­0.008

­0.006

­0.004

­0.002

0

0.002

0.004

PileUp_Residual_Corr
 / ndf 2χ   4237 / 762

Prob       0

p0        1.002e­05± 5.61e­05 

 / ndf 2χ   4237 / 762

Prob       0

p0        1.002e­05± 5.61e­05 
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Figure (4.9) A
ZDC/BBC
LL as a function of run number with pileup, width and residual rate

corrections. A
ZDC/BBC
LL is a bit increased. However χ2

re are dramatically reduced compared
with no corrections as shown in Figure 4.2.

Table (4.2) Summary table of all the corrections in the calculation of the uncertainty in
relative luminosity.

Variables Uncorr Pileup Width Residual

A
ZDC/BBC
LL -2.43 × 10−4 -5.83 × 10−5 -1.70 × 10−5 5.61 × 10−5

χ2
re(run) 9.44 × 101 3.42× 101 2.53× 10 1 5.56× 100

χ2
re(bunch) 3.08 × 103 2.05× 102 1.28× 102 2.36× 101

Syst. Patt 3.00 × 10 −3 1.08 × 10−3 7.34 × 10−4 3.69 × 10−4
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the analysis per fill and then calculating ALL.

Bunch shuffling allows the creation of multiple samples needed to differentiate indica-

tions of systematic uncertainties from normal fluctuations in χ2 of samples. To create a new

sample, the helicity for all bunches in the data sample are randomly assigned. The ALL is

then calculated and a new χ2 is obtained. Doing this numerous times (60,000 in this case),

gives a χ2 distribution. If the distribution differs from the expected distribution for a set

number of degrees of freedom, it is an indication of a systematic effect.

The χ2 distributions of ALL in the signal and background regions with even and odd

bunch crossings from bunch shuffling are shown in Figures 4.10, 4.11, 4.12 and 4.13. The his-

togram on each panel is the χ2 distributions from the data and the red curve is the expected

one given by Equation 4.18. Similarly, the distributions of ALL/σ, where σ is the width of the

distribution, for the peak and background regions are shown in the Figures 4.14, 4.15, 4.16

and 4.17. These distributions are expected to follow the Gaussian distribution with a mean

at 0 and a variance of 1 if the uncertainty is appropriately approximated. The probability

distribution of χ2 is given by:

F (x; k) =


x
k
2−1e−

x
2

2
k
2 Γ( k

2
)
, x ≥ 0;

0, otherwise

(4.18)

where k is a positive integer that specifies the number of degrees of freedom.

4.4 Systematic Uncertainty due to Background Fraction

As mentioned earlier, the background fraction is calculated using the GPR method. In

order to study the systematic effects in background fraction calculations, fitting methods

like Breit Wigner and Gaus + pol2 with different fitting ranges are used. The results are
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Table (4.3) Systematic uncertainty due to background fraction calculation: Aπ0

LL at
√
s =

510 GeV. Lower and upper values of systematic uncertainty from background fraction are
listed.

pT Bin Mean pT Aπ0

LL Aπ0

LL (stat.) Aπ0

LL (syst. low) Aπ0

LL (syst. high)
2.0-2.5 2.28e+0 -5.97e-5 1.20e-3 -3.14e-5 6.48e-5
2.5-3.0 2.76e+0 -8.98e-4 8.64e-4 -5.54e-7 4.82e-6
3.0-3.5 3.25e+0 3.47e-4 7.62e-4 -2.50e-5 4.26e-5
3.5-4.0 3.74e+0 -4.71e-4 7.61e-4 -6.10e-5 8.29e-5
4.0-4.5 4.24e+0 1.10e-3 8.22e-4 -7.96e-5 6.48e-5
4.5-5.0 4.74e+0 7.99e-4 9.34e-4 -1.46e-6 5.09e-6
5.0-6.0 5.45e+0 3.93e-4 8.33e-4 -5.42e-20 1.43e-5
6.0-7.0 6.45e+0 1.58e-3 1.17e-3 -5.74e-5 2.72e-5
7.0-8.0 7.45e+0 1.30e-3 1.65e-3 -9.20e-5 5.45e-5
8.0-9.0 8.45e+0 3.03e-3 2.31e-3 -4.87e-5 2.05e-5
9.0-10. 9.45e+0 6.42e-3 3.22e-3 -6.23e-4 2.14e-4

10.0-12.0 1.08e+1 7.80e-3 3.50e-3 -3.31e-4 1.21e-4
12.0-15.0 1.31e+1 9.51e-5 5.50e-3 -3.67e-4 5.03e-5
15.0-20.0 1.66e+1 8.62e-3 1.10e-2 -1.21e-3 7.32e-4

given in Table 4.3. The first column is the transverse momentum (pT ), the second is the

average value of transverse momentum, the third column is the double helicity asymmetry,

the fourth is the statistical uncertainty, the fifth and the sixth columns are the lower and

upper ranges of systematic uncertainty from the background fraction calculations. From this

table, it is seen that the systematic uncertainties from the background fraction calculations

are negligible compared to statistical uncertainties for all pT ranges.

4.5 Summary

The systematic effects due to single spin asymmetry, relative luminosity and bunch-

to-bunch spin effects are studied. Table 4.4 shows a summery of the dominant systematic

uncertainties. These are dominated by the relative luminosity systematic uncertainty over

the whole pT range while the uncertainty due to single spin asymmetry is negligible. The

global uncertainty due to polarization is ∼ 6.5% which also affect our results.
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Figure (4.10) χ2/NDF from 600000 bunch shuffled samples from even bunches for Aπ
0+BG
LL .

The red dash curves are from the theoretical χ2 fit.
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Figure (4.11) χ2/NDF results from 600000 bunch shuffled samples from odd bunches for

Aπ
0+BG
LL . The red dash curves are from the theoretical χ2 fit.
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Figure (4.12) χ2/NDF results from 600000 bunch shuffled samples from even bunches for
ABGLL . The red dash curves are the from the theoretical χ2 fit.
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Figure (4.13) χ2/NDF results from 600000 bunch shuffled samples from odd bunches for
ABGLL . The red dash curves are from the theoretical χ2 fit.
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Figure (4.14) The distribution of Aπ
0+BG
LL /σ for even bunches from the bunch shuffling. The

red dash curves show Gaussian fit.

Table (4.4) Summary of non-negligible systematic uncertainites in the ALL measurements
is presented. The systematic uncertainty due to bunch shuffling with pT below 12 GeV is
negligible.

source Effects
single spin asymmetry 4.5 ± 2.5 × 10−4 (Blue), -1.74±2.5 ×10−4 (Yellow)

bunch shuffling (pT >12 GeV) < 1%
relative luminosity 3.853×10−4

polarization 6.5%
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Figure (4.15) The distribution of Aπ
0+BG
LL /σ for odd bunches from the bunch shuffling. The

red dash curves show Gaussian fit.
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Figure (4.16) The distribution of ABGLL /σ for even bunches from the bunch shuffling. The red
dash curves show Gaussian fit.
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Figure (4.17) The distribution of ABGLL /σ for odd bunches from the bunch shuffling. The red
dash curves show Gaussian fit.
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CHAPTER 5

RESULTS AND DISCUSSION

The double helicity asymmetry in terms of particle yield, polarization and relative lu-

minosity is calculated to the following Equation:

ALL =
∆σ

σ
=

1

PBPY

N++ −RN+−

N++ +RN+− , R ≡
L++

L+− (5.1)

where PB(Y ) is the polarization of the blue (yellow) beam, R is the relative luminosity and

N++(N+−) are the number of π0’s obtained from the same sign (opposite sign) helicity

collisions. There are three ingredients necessary to calculate ALL as explained above. The

first one is the beam polarization, second is the relative luminosity and the third is the π0

yield with same and opposite helicities, among which the first and the second are discussed in

previous chapters. In this chapter, we focus on calculating ALL and its statistical uncertainty

(σALL). RHIC carried out collisions with different spin patterns in order to reduce any

systematic uncertainties from changing beam conditions. The asymmetries for the different

spin patterns as a function of pT are calculated. Finally, the double helicity asymmetry

results obtained from the data collected in 2013 are discussed. ALL results from 2013 is

compared with those at 510 GeV from the data collected in 2012 and data collected in 2006

and 2009 [68]. The data are also compared with DSSV1 calculation [70].

The π0 peak region in the invariant diphoton mass spectrum includes both π0 and

background that can not be distinguished. Since the π0 mass window includes both π0 and

background the calculated asymmetry will be diluted by the background. To extract the π0

asymmetry, the background asymmetry must be subtracted. The background asymmetry is

independently calculated from shaded side bands as shown in Figure 3.3. This is based on

1RHIC data are combined with data from inclusive and semi inclusive DIS in a next-to-leading order
(NLO) global QCD analysis, which is referred to as DSSV analysis.
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the assumption that the background under the π0 peak is an extension to that on both sides

of the π0 peak. To accurately subtract the background asymmetry, the background fraction

under the π0 peak must be determined. The background fraction is calculated using the

GPR method as detailed in Chapter 3.

5.1 Signal and Background Yield

In this section, the signal and background yields for different spin patterns are presented.

As is stated in Chapter 2, there are eight spin patterns used for the data used in this analysis.

They are grouped into four categories namely, SOOSSOO2, OSSOOSS, SSOO and OOSS.

The invariant yield of π0 for these spin patterns for signal and background regions are shown

in Tables 5.1 and 5.2. Finally, the cross-section as well as double helicity asymmetry results

from run 13 are presented.

5.1.1 Spin Pattern Separated Yields and Background Fraction

π0 yields for different spin patterns for even crossings are shown below:

Table (5.1) Di-photon yields and background fractions for even crossings for different spin

patterns.

pT (GeV/c) Spin Pat. Peak Yield Back. Yield Back. Frac.(%)

SOOSSOO 296431 133454

2.0-2.5 OSSOOSS 357018 159785 27.6

SSOO 3561801 1795840

OOSS 3707908 1888111

SOOSSOO 414846 147320

2.5-3.0 OSSOOSS 502605 176948 20.5

2S represents same helicity and O represents opposite helicity for blue and yellow beam. Similar scheme
for other patterns also.
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SSOO 5546694 2115502

OOSS 5809845 2229894

SOOSSOO 447018 132899

3.0-3.5 OSSOOSS 539953 160380 16.5

SSOO 6215045 1968842

OOSS 6544653 2086957

SOOSSOO 388404 102092

3.5-4.0 OSSOOSS 462936 121591 13.9

SSOO 5659189 1579614

OOSS 5982479 1679693

SOOSSOO 301362 72856

4.0-4.5 OSSOOSS 356470 85530 12.5

SSOO 4560569 1167810

OOSS 4842545 1241876

SOOSSOO 220049 50829

4.5-5.0 OSSOOSS 258047 58877 11.7

SSOO 3429552 818916

OOSS 3637003 873264

SOOSSOO 268595 57276

5.0-6.0 OSSOOSS 312192 66378 11.2

SSOO 4214987 927075

OOSS 4468989 981733

SOOSSOO 133421 25700

6.0-7.0 OSSOOSS 153476 29196 10.5

SSOO 2097162 407445

OOSS 2208305 429549

SOOSSOO 66517 11586

7.0-8.0 OSSOOSS 76196 13272 9.7
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SSOO 1041814 182992

OOSS 1093378 190831

SOOSSOO 33694 5529

8.0-9.0 OSSOOSS 37978 6084 10.3

SSOO 522942 85532

OOSS 545742 89294

SOOSSOO 17936 2708

9.0-10.0 OSSOOSS 20167 3049 9.6

SSOO 273048 42258

OOSS 284529 44208

SOOSSOO 15383 2238

10.0-12.0 OSSOOSS 17282 2509 10.3

SSOO 234195 34620

OOSS 243792 35884

SOOSSOO 6291 866

12.0-15.0 OSSOOSS 7013 1000 10.4

SSOO 95870 13796

OOSS 100091 14480

SOOSSOO 1645 271

15.0-20.0 OSSOOSS 1865 322 12.7

SSOO 25539 4373

OOSS 26451 4638

π0 yields for different spin patterns for odd crossings are shown below:
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Table (5.2) Di-photon yields and background fractions for odd crossings for different spin

patterns.

pT (GeV/c) Spin Pat. Peak Yield Back. Yield Back. Frac.(%)

SOOSSOO 301911 133408

2.0-2.5 OSSOOSS 370996 163971 27.4

SSOO 3442239 1738964

OOSS 3616037 1836657

SOOSSOO 411715 144410

2.5-3.0 OSSOOSS 505786 177585 20.6

SSOO 5351868 2043877

OOSS 5637522 2164618

SOOSSOO 434889 128776

3.0-3.5 OSSOOSS 529470 157140 16.6

SSOO 6003952 1902906

OOSS 6348560 2025332

SOOSSOO 373161 97903

3.5-4.0 OSSOOSS 448432 118101 14.0

SSOO 5464919 1527769

OOSS 5799947 162045

SOOSSOO 288837 70142

4.0-4.5 OSSOOSS 344501 82581 12.5

SSOO 4405739 1128086

OOSS 4690574 1201452

SOOSSOO 212388 48757

4.5-5.0 OSSOOSS 249511 56109 11.8

SSOO 3312566 792768

OOSS 3525032 844286
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SOOSSOO 258098 55250

5.0-6.0 OSSOOSS 300589 63308 10.6

SSOO 4078000 895940

OOSS 4324431 951008

SOOSSOO 128446 24911

6.0-7.0 OSSOOSS 146662 28141 10.0

SSOO 2024522 394326

OOSS 2137035 416102

SOOSSOO 64316 10937

7.0-8.0 OSSOOSS 73090 12578 10.3

SSOO 1009074 176731

OOSS 1054626 184662

SOOSSOO 32384 5353

8.0-9.0 OSSOOSS 36725 5845 8.9

SSOO 506375 83229

OOSS 526337 86903

SOOSSOO 17058 2622

9.0-10.0 OSSOOSS 19158 3028 10.4

SSOO 264092 41119

OOSS 275975 43096

SOOSSOO 14739 2035

10.0-12.0 OSSOOSS 16808 2416 9.4

SSOO 226323 33696

OOSS 235332 35158

SOOSSOO 6035 839

12.0-15.0 OSSOOSS 6778 1035 10.3

SSOO 91991 13512



94

OOSS 96361 13838

SOOSSOO 1577 262

15.0-20.0 OSSOOSS 1849 335 11.3

SSOO 24749 4276

OOSS 25666 4330

The background corrected asymmety and corresponding statistical uncertainty of π0 are

calculated using Equations 5.2 and 5.3.

Aπ
0

LL =
Aπ

0+BG
LL − rABGLL

1− r
(5.2)

σπ
0

ALL
=

√
σ2

Aπ
0+BG
LL

+ r2σ2
ABGLL

1− r
, (5.3)

where r = NBG
Nπ0+BG

is the background fraction. The number of particles within background

region is calculated by fitting the background region using the GPR method and counting

the particle within the fit.

Aπ
0

LL is calculated over the pT range, 2≤ pT ≤ 20 GeV/c. Below 2 GeV/c, the mass spectrum

is dominated by background and above 20 GeV/c2 the π0 yield is limited statistically. Due

to different ERT electronics chains, the data are analyzed separately for even and odd bunch

crossings. The final ALL is the weighted average of those of even and odd bunch crossing.

ALL =

AevenLL

(δAevenLL )2
+

AoddLL

(δAoddLL )2

1
(δAevenLL )2

+ 1
(δAoddLL )2

. (5.4)

while the uncertainty is:

δALL =

√
1

1
(δAevenLL

)2 + 1
(δAoddLL )2

. (5.5)

The statistical uncertainties in the Equation 5.3, σNγγ are not simply
√
Nγγ. There may

be more than one photon pair per event in the selected mass region, which causes a slight
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increase in the uncertainty,

σNγγ =

√
κ̄2

κ
Nγγ (5.6)

where κ is the multiplicity of the collisions and κ̄ is the average of the multiplicity of the

collisions. The values of κ̄2

κ
Nγγ for different pT bins used in this analysis are shown in

Table 5.3.

The pT distribution may differ between signal and background region so the π0 pT is

Table (5.3) κ-factors for the π0 +BG and BG region.

pT (GeV/c) κπ
0+BG(Even) κBG(Even) κπ

0+BG(Odd) κBG(Odd)
2-2.5 1.0591 1.1266 1.0592 1.1222
2.5-3 1.0438 1.1077 1.0440 1.1066
3-3.5 1.0358 1.0975 1.0353 1.0979
3.5-4 1.0303 1.0908 1.0303 1.0892
4-4.5 1.0265 1.0830 1.0259 1.0845
4.5-5 1.0222 1.0775 1.0221 1.0771
5-6 1.0325 1.1148 1.0325 1.1130
6-7 1.0247 1.1007 1.0249 1.1013
7-8 1.0217 1.0925 1.0205 1.0879
8-9 1.0176 1.0790 1.0172 1.0798
9-10 1.0157 1.0757 1.0162 1.0754
10-12 1.0227 1.0965 1.0265 1.1065
12-15 1.0297 1.1243 1.0263 1.1014
15-20 1.0318 1.1108 1.0301 1.0947

determined according to Equation 5.7

〈
pπ

0

T

〉
=

〈
pπ

0+BG
T

〉
− r

〈
pBGT

〉
1− r

(5.7)

where r is the background fraction from Table 5.5. The average value of pT is given in

Table 5.4.
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Table (5.4) Mean pT for each pT bin.

pT (GeV/c) Average pT (<pT>) (GeV/c)
2.0-2.5 2.2801
2.5-3.0 2.7627
3.0-3.5 3.2507
3.5-4.0 3.7440
4.0-4.5 4.2401
4.5-5.0 4.7378
5.0-6.0 5.4460
6.0-7.0 6.4454
7.0-8.0 7.4454
8.0-9.0 8.4471
9.0-10.0 9.4512
10.0-12.0 10.824
12.0-15.0 13.140
15.0-20.0 16.627

5.2 Results and Discussion

5.2.1 Cross-Section

The invariant differential cross-section for π0 production is calculated according to the

following Equation:

E
d3σ

dp3
=

1

L
1

2πp∗T

C.N

∆pT∆y
, (5.8)

where N is the number of π0’s observed in a ∆pT wide bin at p∗T defined as the pT for which

the cross-section equals its average over the bin; ∆y is the rapidity range; C includes correc-

tions for trigger efficiency, geometrical acceptance, π0 reconstruction efficiency, and detector

resolution effects; L is the integrated luminosity for the analyzed data sample.

Figure 5.1 shows the π0 cross-section versus pT compared to NLO pQCD calculations

performed with MSTW [75] parton distribution functions (PDF) and DSS14 [70] fragmenta-

tion functions (FF). Compared to earlier FF analysis [76], the DSS14 recent global fit results

preferred a smaller fraction of pions produced from gluon hadronization, driven mainly by

the latest LHC data. The theoretical calculation agrees with the presented data very well.
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Table (5.5) Background fraction, r, in the π0 +BG region for even and odd bunch

pT (GeV/c) Even Odd
2.0-2.5 0.32 0.32

2.5 - 3.0 0.21 0.21
3.0 - 3.5 0.16 0.16
3.5 - 4.0 0.13 0.13
4.0 - 4.5 0.12 0.12
4.5 - 5.0 0.11 0.11
5.0 - 6.0 0.13 0.13
6.0 - 7.0 0.12 0.12
7.0 - 8.0 0.11 0.11
8.0 - 9.0 0.11 0.11
9.0 - 10.0 0.11 0.11
10.0 - 12.0 0.10 0.10
12.0 - 15.0 0.10 0.10
15.0 -20.0 0.12 0.13

Due to this agreement between the data and the theory, the theory can be used to interpret

the ALL results.

5.2.2 Double Helicity Asymmetry (ALL) Results

Figure 5.2 shows the final double helicity asymmetry from the year 2013 at
√
s = 510

GeV. Results from the year 2013 are combined with those from the year 2012 to enhance

statistical accuracy. Figure 5.3 shows the π0 ALL asymmetries at
√
s = 510 GeV from years

2012 and 2013 data combined and is compared with the DSSV14 calculation [70] based on a

global fit of the world helicity asymmetry data including π0 ALL results at
√
s = 62 and 200

GeV from PHENIX [68] and jet ALL results at
√
s = 200 GeV from STAR [69]. Comparing

the data to the DSSV14 curve we obtain χ2/NDF = 8.0/14, while comparing to the ALL =

0 assumption we obtain χ2/NDF = 18.2/14; the data prefer the DSSV14 curve by a little

more than 3 standard deviations.

Figure 5.4 shows π0 ALL data from PHENIX at both
√
s = 200 GeV [68] and 510 GeV,

along with NLO pQCD analyses from three groups [71, 72, 70]. All three analyses predict
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Figure (5.1) (color online). The neutral pion production cross section at
√
s = 510 GeV

as a function of pT and the results of NLO pQCD calculations for theory scales µ = pT /2
(dotted line), pT (solid line) and 2pT (dashed line), with µ representing equal factorization,
renormalization, and fragmentation scales. Note that the error bars, representing the com-
bined statistical and point-to-point systematic uncertainties, are smaller than the points.
The bottom panel shows the relative difference between the data and theory for the three
theory scales. Experimental uncertainties are shown for the = pT curve.
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an increase in π0 ALL due to pQCD evolution. However, the asymmetries at
√
s = 510 GeV

are systematically above the 200 GeV data points in the overlapping xT range, with xT =

2pT /
√
s. Also, Figure 5.4 shows ALL as the function of pT . From this Figure, it can be

 (GeV/c)
T

p

0 2 4 6 8 10 12 14 16 18 20

L
L

A

­0.01

0

0.01

0.02

0.03

0.04

510 GeV: Run13 Final

 + X0
π →pp 

Figure (5.2) ALL vs pT for π0 production at mid-rapidity at
√
s = 510 GeV from run 13.

seen that there is a non-zero asymmetry beyond the previous results [68]. Table 5.6 gives

the double helicity asymmetry values at
√
s = 510 GeV. The first and second columns are

the covered pT range and average pT , the third and fourth columns are the double helicity

asymmetries and the corresponding statistical uncertainties.
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Rel. lum. (shift) uncertainty

6.5% pol. scale uncertainty not shown

DSSV’14 with 90% CL band

Figure (5.3) ALL vs pT for π0 production at mid-rapidity at
√
s = 510 GeV. Shift uncertainty

from relative luminosity is shown at ALL = 0. Theoretical curve with 90% C.L. band is
DSSV14 calculation [70].
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Figure (5.4) ALL vs xT for π0 production at mid-rapidity at
√
s =200 GeV from [68] and√

s = 510 GeV from this analysis. Note that the shift uncertainties from two data samples
are about the same, hence indistinguishable in this plot. Theoretical curves are from recent
NLO global analyses [64, 59, 70].
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Table (5.6) Aπ
0

LL at
√
s = 510 GeV

pT (GeV/c) Mean PT (GeV/c) Aπ0

LL ∆ Aπ0

LL

2.0-2.5 2.2801 -2.2138×10−4 1.2918×10−3

2.5-3.0 2.7627 -1.3901×10−3 9.2251×10−4

3.0-3.5 3.2507 4.6369×10−4 8.1329×10−4

3.5-4.0 3.7440 -4.8270×10−4 8.1390×10−4

4.0-4.5 4.2401 4.4910×10−4 8.8162×10−4

4.5-5.0 4.7378 2.2152×10−4 1.0026×10−3

5.0-6.0 5.4460 2.5139×10−4 8.9455×10−4

6.0-7.0 6.4454 2.0970×10−3 1.2523×10−3

7.0-8.0 7.4454 8.5907×10−4 1.7673×10−3

8.0-9.0 8.4471 2.5418×10−3 2.4795×10−3

9.0-10.0 9.4512 7.3621×10−3 3.4539×10−3

10.0-12.0 10.824 6.0844×10−3 3.7467×10−3

12.0-15.0 13.140 -1.5295×10−3 5.9230×10−3

15.0-20.0 16.627 1.4624×10−2 1.1918×10−2
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CHAPTER 6

SUMMARY AND CONCLUSION

The double helicity asymmetry in π0 production in polarized proton-proton collisions

at
√
s = 510 GeV has been measured. The result is compared with similar measurements

at
√
s = 200 GeV. The systematic uncertainties were dominated by the uncertainty due

to the relative luminosity at ∼ 3.9 × 10−4. The result is also compared with the results

obtained from DSSV global analysis. This results is especially important since it pushes the

kinematic coverage down to x ∼0.01 and it is expected to provide better constrains on ∆g(x)

once included in a global analysis of the world data such as DSSV.

Previous PHENIX data at 200 GeV [68] were included in the DSSV global analysis [70]

and significantly constrained ∆g(x). The gluon helicity distribution ∆g(x,Q2) at Q2 = 10

GeV2 from new DSSV fit using
√
s = 200 GeV data is shown in Figure 6.1 [70]. The solid

line represents the central fit result while the dotted lines corresponds to additional fits that

are within the 90% confidence level (C.L.) interval. Figure 6.2 shows the variation of the

total χ2 of the fit as a function of the truncated first moment in the RHIC x-range,
∫ 0.2

0.05

dx ∆g(x,Q2), for various values of Q2. A similar analysis, although not as detailed, that

included the 510 GeV results was carried out [77]. The ∆χ2 profile results obtained from

this quick analysis compared with the DSSV14 [70] is shown in Figure 6.3. The minimum of

χ2 corresponds to the best fit value of ∆G. The width corresponds to its uncertainty. The

510 GeV data provides better constrains on ∆g(x) as the width becomes narrower which

can be seen in Figure 6.3.

In summary, we presented recent PHENIX measurement of ALL in π0 production in

longitudinally polarized p + p collisions at
√
s = 510 GeV based on the data collected in
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Figure (6.1) Gluon helicity distribution at Q2 = 10 GeV2. The dotted lines represent the
gluon densities for alternative fits that are within the 90% C.L. limit [70].

2013. A non-zero asymmetry is observed indicating a non-zero gluon contribution to the

spin of the proton in the accessed kinematic range.

6.1 Outlook

The new polarized Electron Ion Collider (EIC) is currently under review. The EIC

is expected to cover a large range in x, reaching a minimum x of 10−4. Such a collider

will not only map the polarized gluon distribution but also offer insights into the orbital

angular momentumn (OAM) of quarks and gluons. Orbital angular momentum depends

on the correlation between positions and momenta of the quarks and gluons. The EIC will

provide three-dimensional images of the sea quark and gluon distributions which will provide

insights into the overall spin structure of proton. The EIC machine design specifications are

aimed at achieving higher polarization (∼ 70%) of electron and nucleon beams and high
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Figure (6.2) Change of the ∆χ2 profile of the truncated first moment of ∆g in the x-range
with Q2. The solid lines at the base of the plot indicate the 90% C.L. interval [70].
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Figure (6.3) Variation of total χ2 of the fit as a function of the truncated first moment of
∆g in the x-range ∼ [0.01 - 0.05]. The results obtained from

√
s = 510 GeV is compared

with the DSSV14 results [70]. This calculation is from [77].
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detector capabilities. This will allow achieving a precision far beyond that of any other

existing facilities in the world. It can collide ion beams from light nuclei like deuteron to the

heaviest nuclei (uranium or lead). In addition, it provides high collision luminosity ∼ 1033−34

cm−2s−1. The projected correlated truncated integrals of ∆Σ and ∆g over 0.001 ≤ x ≤ 1 are

shown in Figure 6.4. The light shaded area displays the present accuracies of the integrals of

∆Σ and ∆g over 0.001 ≤ x ≤ 1, along with their correlations. The expected improvement on

the precision of the measurement obtained from the EIC based on global analysis projections

is represented by the inner areas in Figure 6.4. This results clearly highlight the power of

the EIC in mapping out nucleon helicity structure.

Figure (6.4) Accuracies for the correlated truncated integrals of ∆Σ and ∆g over 0.001 ≤
x ≤ 1, on the basis of the DSSV+ analysis (outer area) and projected for an EIC (inner
areas) [78].
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Appendix A

DOUBLE HELICITY ASYMMETRY PLOTS

A.1 Spin Pattern Separated Asymmetries Results

There were four spin patterns namely SOOSSOO, OSSOOSS, SSOO and OOSS during

the run year of 2013. The following figures show raw ALL for each of the spin patterns as a

function of run index for different crossings, signal and background regions and for different

pT bins. The results from each pT bin data is fit with constant to get the average value of

ALL.
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Figure (A.1) Double spin asymmetry for spin patterns SOOSSO and even crossing, signal
region.
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Figure (A.2) Double spin asymmetry for spin patterns SOOSSO and even crossing, back-
ground region.
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Figure (A.3) Double spin asymmetry for spin patterns SOOSSO and odd crossing, signal
region.
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Figure (A.4) Double spin asymmetry for spin patterns SOOSSO and odd crossing, back-
ground region.
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A.2 Trigger Separated ALL Results

As a cross-check, the spin pattern separated ALL for different triggers used in this

analysis are presented in following figures. Here, ALL results as a function of run index

for different spin patterns, different triggers and different crossing for different pT bins are

shown.
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Figure (A.5) Double spin asymmetry for spin patterns OSSOOSS and even crossing, signal
region.
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Figure (A.6) Double spin asymmetry for spin patterns OSSOOSS and even crossing, back-
ground region.
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Figure (A.7) Double spin asymmetry for spin patterns OSSOOSS and odd crossing, signal
region.
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Figure (A.8) Double spin asymmetry for spin patterns OSSOOSS and odd crossing, back-
ground region.
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Figure (A.9) Double spin asymmetry for spin patterns SSOO and even crossing, signal region.
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Figure (A.10) Double spin asymmetry for spin patterns SSOO and even crossing, background
region.
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Figure (A.11) Double spin asymmetry for spin patterns SSOO and odd crossing, signal
region.
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Figure (A.12) Double spin asymmetry for spin patterns SSOO and odd crossing, background
region.
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Figure (A.13) Double spin asymmetry for spin patterns OOSS and even crossing, signal
region.
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Figure (A.14) Double spin asymmetry for spin patterns OOSS and even crossing, background
region.
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Figure (A.15) Double spin asymmetry for spin patterns OOSS and odd crossing, signal
region.
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Figure (A.16) Double spin asymmetry for spin patterns OOSS and odd crossing, background
region.
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Figure (A.17) Double spin asymmetry for different spin patterns for 4x4a trigger and even
crossing.



132

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­2

­1
.5­1

­0
.50

0
.51

1
.52

<
2

.5
T

2
.0

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.20

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

<
3

.0
T

2
.5

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.4

­0
.3

­0
.2

­0
.10

0
.1

0
.2

0
.3

0
.4

<
3

.5
T

3
.0

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.2

5

­0
.2

­0
.1

5

­0
.1

­0
.0

50

0
.0

5

0
.1

0
.1

5

<
4

.0
T

3
.5

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.3

­0
.2

­0
.10

0
.1

0
.2

<
4

.5
T

4
.0

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.3

­0
.2

­0
.10

0
.1

0
.2

0
.3

<
5

.0
T

4
.5

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.2

­0
.1

5

­0
.1

­0
.0

50

0
.0

5

0
.1

0
.1

5

0
.2

<
6

.0
T

5
.0

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.2

­0
.10

0
.1

0
.2

0
.3

<
7

.0
T

6
.0

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.5

­0
.4

­0
.3

­0
.2

­0
.10

0
.1

0
.2

0
.3

0
.4

<
8

.0
T

7
.0

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.8

­0
.6

­0
.4

­0
.20

0
.2

0
.4

0
.6

0
.81

<
9

.0
T

8
.0

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.8

­0
.6

­0
.4

­0
.20

0
.2

0
.4

0
.6

0
.8

<
1

0
.0

T
9

.0
<

p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­0
.8

­0
.6

­0
.4

­0
.20

0
.2

0
.4

0
.6

0
.81

<
1

2
.0

T
1

0
.0

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­3­2­10123

<
1

5
.0

T
1

2
.0

<
p

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

­3­2­10123

<
2

0
.0

T
1

5
.0

<
p

s
o

o
s
s
o

o

o
s
s
o

o
s
s

s
s
o

o

o
o

s
s

Figure (A.18) Double spin asymmetry for different spin patterns for 4x4a trigger and odd
crossing.
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Figure (A.19) Double spin asymmetry for different spin patterns for 4x4b trigger and even
crossing.
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Figure (A.20) Double spin asymmetry for different spin patterns for 4x4b trigger and odd
crossing.
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Figure (A.21) Double spin asymmetry for different spin patterns for 4x4c trigger and even
crossing.
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Figure (A.22) Double spin asymmetry for different spin patterns for 4x4c trigger and odd
crossing.
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