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Motivation

Heavy lon Collisions at RHIC Energies are expected to produce
a new Phase of matter (Quark-gluon plasma).

There are a number of potential signatures to be studied for the
formation a the QGP.

The Signatures are studied simultaneously as a function of the energy
density e.

The charged particle multiplicity dN/dn is related to € by the
relation \/mﬁ +(P?) 3 N
€= —
R°T, 2 dy

where <p.>is the mean transverse energy of the tracks produced in the
collision,R ~ A® ~ 6 fm for Au and 1, is the formation time ~ 1 fm/c

Therefore the charged particle multiplicity can tell the initial
energy density of formation.

The potential signatures can be studied as a function of the
dN/dn (dE;/dy), which are related to «.
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Phase Diagram

_

Water Vapor

Temperature

100°C

0°C -

Pressure

760mm

Water

GeV/fm?

Temperature

100 A-GeV Collider

T
g-afew 4

Normal
Nucleus

q p
ap\ (r -0.6fm)
fﬁy

200 MeV §*

Hadronic
Matter

ion

Quark-Gluon
Plasma

10100 AGeV

: g nucleon
@r-u.ﬁfm]

— Pl
-5 -20

\ (1.8/0.8)% - 10

Density

Nuclear Matter



How to Create QGP

_bouurk-Gluon
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Quarks and gluons

Create hot region of become unbound to
Increase Baryon high initial energy form a Quark Gluon
Density density g, ~ few Plasma (QGP)
(AGS/SPS) GeV/fm?
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Kinematics

A
Transverse momentum _ 2 2 _
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Relativistic Heavy lon Collider (RHIC)

RHIC Complex at
the Brookhaven
National Lab



Heavy lon Collisions at RHIC

Two ions approach one another. The ions are flat,
Instead of spherical, because they're going 99.95% of the

speed of light.

The two ions collide. If conditions are right, the collision
"melts” the protons and neutrons and, for a brief instant,
liberates the quarks and gluons.

Just after the collision, thousands more particles form as
the area cools off. Each of these particles is a clue to
what happened inside the collision.



Event Display in a Au-Au Collision
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Signhatures of Quark-Gluon Plasma

Phi-Meson There are a number of
& Potential signatures for the
j QGP Formation.

The Heavy-ion experiments
study as many signhatures as
possible

The potential signatures are
studied as a function of the

Radiation from energy density € or the
Ta Hot Gas ithermal) rapidity density of the
transverse energy (dE;/dy) or
/ the pseudorapidity density of
the charged particle
, o UET multiplicity(dN/dn)




PHENIX Experiment at RHIC
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Design Concept

Pair spectrometers
Essential for vector meson, virtual photon detection

Good particle identification (e,,K,p,y,1 plus pairs e.g. 1O,
W, 9

Low occupancy of “pixels”

Essential for particle identification, systematic control of
efficiency

High data rate and selective multi-level triggering

Two central arms
Electrons, photons, hadrons; Coverage: A@ = 1t/2each, An=0.7

Two “muon” endcaps

Coverage: A@ = 2meach, An=1.15-2.44 (north), 1.15-2.25
(south) e/, p/h rejections better than 103



Physics Goals

m Search for evidence of Quark-Gluon Plasma
mFollowing range of probes to be covered
mVector mesons
mDirect photons (real and virtual)
mldentified hadrons
mCollective motion and correlations
mGlobal observables
mCapability to cover A+A, p+A, p+p essential
m Study spin-structure of nucleon.



Multiplicity & Vertex Detector

B Dimensions : 70 cm long, 30 cm radius

B Weight : 11 kg

Physics Goals

» Charged Particle
Multiplicity

B 34720 electronics channels

= Collision Vertex
Position

End Caps : z=£35 cm
r=5to 12 cm

(2 end-caps*12
pads*252)

=6048 channels

Inner Barrel : |z|]<32 cm, r=5 cm
(72 panels*256strips)=18432 channels

Outer Barrel : |z|<32 cm, r=7.5 cm
(40 panels*256 strips)=10240 channels




How Does MVD (or any Silicon Detector) Work

PO OO0 |

e
P I CICECECRECIC

Hole and *free—electron’
Free Region

Particle Track

MNewly generated
electron—hole pairs

/

B Apply enough reverse
voltage so that no free charge
carriers exist

B When tracks pass through
the silicon, it will deposit a
fraction of its energy, which
will produce free charge
carriers.

B Charge carriers are
attracted to the opposite
terminals, and we will have
signal.



MVD Electronics Chain
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MVD Yearl Configuration

MCMs in MVD

Inner Outer Pad
Barrel Barrel

Design 72 40 24
Y1 24 10 12

Only 2 good MCM,
512 Channels

But/Still has the
lafgest n coverage

e Participated in 2 Runs :
.#12397 - 78 SegmentS =il bl ke ...'.'.'. —— I :.r:'_:"_. - _? |
+#12399 : 3 segments i T [ T T [ § [ o [ [ e

e About 120,000 Events
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Centrality Selection

| BBC Charge vs ZDC Energy Distribution
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Raw ADC Distribution for All Channels

RawStrip ADC Distribution |

. 1ooq
ADC in a strip

No Calibration

Are these Mips ?

Very Wide Pedestal

Two Major Complications:

1. Event by event jumping
of pedestals

2. AMU cell dependence of
pedestals

Raw Strip ADC vs Strip

81 00 =
£

800

600

stripnumber



AMU Cell Dependence of Pedestals

» AMUs are analog equivalent of RAM

- : : Strong Dependence on AMU
» Each Memory Cell is a small Capacitor cell position
» Each Strip has one-to-one

correspondence with a memory pipe
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Correction for the AMU Cell Dependence of Pedestals

rawhist430 rawhist490
Nent =0
S P T T o T TiMeanx - 31.89
m Plot an 1-D plot A e
_ w08 oL ©i . /RAMSx = 18.45

AMSy = B.851

for each Before
channel for Correction
each amu.

W For each plot

find the mean R
of the ADC |
[ normhistago | nc;::tli(s)tqso
B Normalize ADC e
around 300. After o
ADC(normalized)= Correction 320
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Event by Event Correction

Objective

4+ In each event Identify
the “true” pedestals.

+ Once identified, find
the mean. This mean
contains the amount
the pedestals
“lumped” in that
event.

+ Then subtract the
mean from all the
measurements in that
event. This eliminates
the pedestals

jumping.

Procedure

Stepl : Find the lowest 30% entries in
each event. These entries are
undoubtedly pedestals. Plot them and
get Mean and RMS.

Step2 : Extend the window. We find the
entries that are less than (Mean+
2*RMS). Plot them and get Mean and
RMS.

Step3 : Extend the window even further.
Find entries that are less than (Mean +
3*RMS) (from step2). THESE ENTRIES
ARE IDENTIFIED PEDESTALS. Plot them
and get the Mean.

Step4 : Subtract this Mean from all ADC.
The process is repeated for all events.



Event by Event Correction Applied to Data
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Fitting and Track Selection

| finaltD4 |

i Pedestals are Fitted With
a Gaussian

— Tracks are Fitted with a
Landau convoluted with a
gaussian

_Total Distribution is Fitted with

Total = Gaus + Gaus*Landau

L L k 1 : 1 ! L : L k\ I I I ‘ I I I ; L L L E
/ 0 / 50 \ 100 150 200 950
adc

2-tracks 5-tracks

If p, is the probability to be pedestal and p; is the probability to be a i-track, then
the number of track associated with an ADC is:

n = 0*py+1*p;+2*p,+3*p;+4*p,+5*p;



Strategy to Calculate dN/dn

Measurement is done chip-by-

; a1 chip (32 channels)
------ In any event
""" L BFind the vertex position
| ;‘f EFind dn = Npya-Nmin OF the
chip
o/ EFind n at the center of the

ﬁ\ chip
lxgh

z EFind the total number of
tracks in the chip in that
event. This is dN

EFind dN/dn




Charged Particle Multiplicity in MVD

| all chips dN/dEta
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Acceptance Correction

\ Input Eta distribution

Input Particles -”°°“w
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Charged Particle Multiplicity in MVD and Comparison

with other Measurements in PHENIX

| dN/d 1 as function of N, |
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Energy Density of the Collision

~
<
7
—’/

AJ

T

‘. O
Lo d >
Two ions collision Fireball Particle A
approaching Produced mainly Bjorken Estimate
in the transverse
Fireball expands longitudinally direction Particles are mostly pions.
After time 1, fireball cools of and N=(N_ + N_ + N_)=3/2 (N. + N
particles are produced (N, L 0) (N, )
2 2
Particles are produced mainly in E 1 dE; m; + < pT> 3dN,,
the transverse direction E= = 5 5 —
V R T, dy nmRt, 2 dy
Transverse 2 2
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Energy ! < > Mr Pr hadrons.
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~ AL/3
the Fireball , dz dy 7, R—~AY?~6fm
Vol ; 1, is the formation time — 1 fm/c
olume o
_ V = 7'[R2 (2d) dN/dn for the top 5%6 central events is 639
the Fireball Which ai
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Energy E 1 dE \/r‘nr + dN &1, = 4.97 GeV/(fm2.c)
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Centrality Dependence of Multiplicity as a Function of n

| dN/d 1 vs 1 |
900 dN/dn as vs n plots for
800" different centralities
7m;—+ } HH * HH H+ } As examples, plots for the most
sm;T HHMH HHHH‘H } H H H-H central (top 5%0) events and
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400} events are shown.
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Theoretical Models

HIJING Monte-Carlo Model (Gyulassy & Wanq)
(HIJING = Heavy lon Jet INteraction Generator)

Particle produced in a heavy-ion collision has two components
From soft interactions, which scales linearly with N,
From hard process, which scales with N..

dN/dn = a<N,> + b<N >

Saturation Model (Kharzeev & Nardi)
The initial parton density determines the number of produced charged particle. Naively it can be said that

dN/dn O Number of Partons

The Partons Density is Derived from the following scenario :
Nucleus is Lorentz contracted. Partons lie on a thin sheet in the transverse plane. Area of the transverse plane S,~ TR*

The Parton density keeps growing until all the available nuclear interaction transverse area is filled — the parton density
saturates.

Parton Structure function. Axap=1, small p means large size.

Partons having small Bjorken X will The gluons grow big and saturates
come to the transverse plane. the area
Which means GLUONS

At small Bjorken X, number
of gluons are much much
higher than the number of

quark glyon quarks

Number of partons

Bjorken X



Model Comparison of Data

| Average dN/d nperN__ asfunctionofN . |
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Both models agrees with the data within the error bars.

The Saturation Model describes the shape of the distribution better



Centrality Dependence of Multiplicity : Model Comparison

[_dwdnvsn | dN/dn as vs n plots for
2% different centralities
%‘8(!]

As examples, plots for the most
central (top 5%0) events and
mid-central (20%26-25%0)
events are shown.
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Summary

B The charged particle multiplicity for the Au-Au collisions at
Vs=130GeV is measured with the MVD at PHENIX at RHIC.
For the top 5% central events dN/dn = 639+48(sysfH)+10(stal)
The energy density g,1,= 4.97 GeV/(fm?c)

B The charged particle multiplicity measured with MVD agrees
well with the PHENIX Pad Chamber.

B The dN/dn as a function of n agrees well with the PHOBOS
measurements.

B The centrality dependence of the charged particle multiplicity is
compared with the HIJING soft+hard model and the Saturation

model. Both the models fits the data within the error bar.
Saturation model describes the shape of the distribution better.



Back-up Slides



QGP In the Universe
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Neutron starsarethe collapsed cores
of a massive star.

They pack the mass of the sun into
the size of a city.
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Event by Event Pedestal Jumping

Pedestals “jump” in
event to event!!

Jumping could be
such that the
pedestals can occupy
the ADC range that
could be that of a
track (meaning they
can screen the
tracks)

WE NEED TO
IDENTIFY THE
PEDESTALS BEFORE
WE DO ANYTHING.
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2D plot of ADC in y-axis and stripnumber in X axis.

The plots are for events 400-424.

Look at event 416. All the strips have high ADC.




Event by Event Correction Procedure :
Does it Work?

m We do a simple test

B measure two quantities on a scale that ‘s offset
changes in each measurement.

m Think of an “event” where we change the offset and
record offset 10 times, and measure a block and a
persons weight once. So each event has 12 entries.

m Lets do about 100 events.

Pass the events through the event by event
correction procedure.

m If the procedure works, we will see very narrow
distributions .



Test Result
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Corrections for Multiple Counting of Tracks

Only one track passing thrua  Aj| these Strips Claim
number of strips .
i P “l got hit by a track”

A ~dk A%NA

d=0.02cm
——
t=0.03cm "]

| e

L
}_ L

e
o |

bbcz = zl .- n.d -'-:

Pathlength inside MVD is V(t?+n?d?)
A pathlength of t corresponds to an ADC for a MIP
Pathlength V(t2+n2d?) corresponds to V(t?+n2d?)/t tracks

So the correction factor is t/V/(t?+n?d?) = Sin6



Systematic Error from Fitting

If p, is the probability to be pedestal and p; is the probability to be

a I-track, then the number of track associated with an ADC is:

n = 1*p,+2*p,+3*p,+4*p,+5*p,

|
== =
SSNS

Imagine that an ADC is really due to 2-tracks. Using above relation, we are undercounting the
track by

e2 = '1*p1+0*p2+1*p3+2*p4+3*p5

We counted the number of 1-tracks, 2-tracks etc.
So, if there are N, 2-tracks in a total of N tracks, the error for such tracks are

err, = (-1%p,+0™p,+1*p+2*p,+3%p5)"p,*100%

Where p, = N,/N



