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Introduction - why heavy flavor?
• Heavy Flavors (charms and bottoms) in HI collisions

• HF is created at the early stage of the collisions
• Mainly initial hard scattering due to large mass (Mc~1.2, Mb~4.5GeV)
• Production can be calculated by pQCD

• Passing through the hot and dense medium (QGP)
• Suffer the energy loss and flow effect 
• Sensitive to the medium property
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Heavy flavor is a clean probe to study property of QGP

Calibrated
probe

QGP
Energy loss

Flow



PRC 84 (2011) 044905
PRL 98, (2007) 172301

Heavy Flavor Electrons in Au+Au 200GeV

• Questions
• What is the energy loss 

mechanism for heavy flavor?
• Mass dependence of energy 

loss? 

• This was mixture of        
charm & bottom 
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Surprising results

Single electrons from 
inclusive heavy flavor 
decays shows : 

RAA: strong suppression
v2 : non-zero flow 



To Energy loss mechanism
• Radiative loss (gluon radiation)

• Dead cone effect (PLB519:199,2001):
• Energy loss: ∆Eg > ∆ ELQ > ∆ EHQ 

• ~ high pT

• Collisional loss (multiple scattering)
• Brownian motion in the medium
• ~ low pT
• Sensitive to D (diffusion constant) : coupling strength

• Mass dependence

We need to measure bottom & charm separately 
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PRC 71, 064904 (2005)
Collisional loss of charm quarks 



PHENIX Silicon Vertex Detector(VTX)
• VTX installed in Run2011

• Large coverage
• |η|<1.2, φ ~ 2π

• 4 layer silicon detectors
• 2 inner pixel detector
• 2 outer stripixel detector

• Measure 
• Precise displaced tracking 
• Precise 3D primary vertex
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Strategy to bottom & charm separation
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2. Measure displaced tracking of 
electrons in 1.5 < pT < 5 (GeV/c)

• Utilize difference of  decay length (cτ)

• B+ :  491.1 μm, D+ :  311.8 μm,  

3. Apply the unfolding method to 
separate bottoms and charm 
components
• Take into account the both 

information simultaneously

• Displaced tracking can constrain    
the unfolding result strongly

1. Use published invariant yield of 
single electrons from open heavy 
flavor decays with 1< pT < 9(GeV/c)
• Wide pT coverage 

• Full efficiency corrected 
Phys. Rev. C 84, 044905 (2011)



Precise displaced tracking 

2016/3/1 WWND2016, Takashi HACHIYA 7

Primary 
vertex

D0

K–

e+
 υ

DCAT  ≡ L - R
• Calculate Distance of Closest Approach 

(DCA) of electrons to primary vertex
• Proxy for decay length

• Calculate separately
• DCAT  = in transverse plane

• DCAL = in longitudinal plane 

• DCAT is better by detector design

DCAT resolution
~ 60 µm @ pT>2GeV/c



Electron DCAT distribution
• Measure DCAT in 

Run2011 dataset
• 5 pT bins in 1.5-5GeV/c
• No efficiency correction

• Contain various BG 
components

• Determine the 
normalization and DCAT
shape
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Electron DCAT distribution
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• Various backgrounds
Detector origin backgrounds
• Mis-identified hadrons
• Mis-associated with VTX
DCAT shape and normalization 
determined by data driven (mixed)

Physics origin backgrounds
• Photon Conversions

• ~ 75% rejected by analysis cut

• Dalitz decays of π0 & η
• J/ψ → e+e
• Ke3 (K → e+X)
DCAT shape from MC
Normalization from measured yield 



Unfolding : Flowchart

• Goal: determine initial C/B hadron yield with BEST Likelihood
• Bayesian inference method with MCMC sampling
• Probability distribution for b and c yields and correlation
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Comparison : Unfolding & Data

• Unfolding is consistent with data for 
electron invariant yield and DCAT data
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Data
Charm
Bottom
Background
Total=C+B+BG

arXiv:1509.04662 (2015) arXiv:1509.04662 (2015)
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• Full probability distribution
gives bottom & charm yield  

• Correlation in yield
• Round 

• no correlation

• Positive
• Move simultaneously

• Negative 
• charm ↑ + bottom ↓

2016/3/1 WWND2016, Takashi HACHIYA 19

Full probability distribution
b/c hadron yield

arXiv:1509.04662 (2015)
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Full probability distribution
b/c hadron yield
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• Full probability distribution
gives bottom & charm yield  

• Correlation in yield
• Round 

• no correlation

• Positive in charm near pT
• increase simultaneously

• Negative 
• charm ↑ + bottom ↓
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Full probability distribution
b/c hadron yield



Unfold Charm and Bottom hadron spectra

• Bottom & Charm hadron yield is obtained
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Charm
(D0, D+, Ds, ΛC)

Bottom
(B0, B+, Bs, ΛB)



Unfolding agrees with data
• Unfold charm hadron yield is 

converted to D0 

• Scale to |y|<1 by PYTHIA model

• Unfold charm hadron yield is 
in agreement with STAR D0

measurement

• The unfolding method 
successfully extracted charm. 
thus, bottom yield should be 
reliable
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arXiv:1509.04662 (2015) PRC accepted

Phys. Rev. Lett. 113, 142301



• Consistent with FONLL within error

• Shape is different with FONLL
• A peak at pT=3GeV/c and decreasing w/ higher pT
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Bottom Electron Fraction 𝐹𝐹 = 𝑏𝑏→𝑒𝑒
𝑏𝑏→𝑒𝑒+𝑐𝑐→𝑒𝑒arXiv:1509.04662 (2015) PRC accepted



Comparison with p+p data

• p+p data is consistent with FONLL
• b fraction in p+p by 2 particle correlation

• Au+Au has clear peak at pT=3GeV/c
• This implies the suppression is different with pT2016/3/1 WWND2016, Takashi HACHIYA 26

arXiv:1509.04662 (2015) PRC accepted



Bottom and Charm RAA

• Bottom and charm are suppressed at high pT

• Charm is more suppressed than bottom at pT=3-4 GeV/c

𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐→𝑒𝑒 =
(1 − 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

(1 − 𝐹𝐹𝑝𝑝𝑝𝑝)
𝑅𝑅𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻

𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏→𝑒𝑒 =
𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐹𝐹𝑝𝑝𝑝𝑝

𝑅𝑅𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻
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Using
𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴: bottom fraction in Au+Au
𝐹𝐹𝑝𝑝𝑝𝑝 : bottom fraction in p+p

from STAR
𝑅𝑅𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻 : Open HF 𝑅𝑅𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻 in Au+Au

arXiv:1509.04662 (2015) PRC accepted



Comparison with Models
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There are many 
models describing 
heavy flavor energy 
loss collisional 
(+radiative)

PLB 735, 445 (2014)

PRC 90, 
034910
(2014)

J. Phys. G: 
Nucl. Part. Phys. 
40 (2013) 085103

EPJ. C 61, 
799 (2009).

• Radiative loss by 
DGLV model

• Consistent at low pT

• Different at high pT



Comparison with Models
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There are many 
models describing 
heavy flavor energy 
loss collisional 
(+radiative)

PLB 735, 445 (2014)

PRC 90, 
034910
(2014)

J. Phys. G: 
Nucl. Part. Phys. 
40 (2013) 085103

EPJ. C 61, 
799 (2009).

• Collisional loss 
by Langevin
approach

• Agree with 
D=6 at low pT

• increasing 
monotonically



Comparison with Models

2016/3/1 WWND2016, Takashi HACHIYA 30

There are many 
models describing 
heavy flavor energy 
loss collisional 
(+radiative)

PLB 735, 445 (2014)

PRC 90, 
034910
(2014)

J. Phys. G: 
Nucl. Part. Phys. 
40 (2013) 085103

EPJ. C 61, 
799 (2009).

• Collisional loss 
by T-matrix 
approach

• Agree with D=4-
6 at low pT

• Similar trend with 
data



Comparison with Models
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There are many 
models describing 
heavy flavor energy 
loss collisional 
(+radiative)

PLB 735, 445 (2014)

PRC 90, 
034910
(2014)

J. Phys. G: 
Nucl. Part. Phys. 
40 (2013) 085103

EPJ. C 61, 
799 (2009).

• Models not well described the data
• Data gives an additional constraint with models

• Our data has large uncertainty for high pT. Need higher statistics



Future prospects
• High quality data in run2014 – 2016 Au+Au & p+p

• 10 time larger statistics in run2014 Au+Au 200GeV
• Run2016 is running to make the statistics twice.

• Detector performance improved 

• Apply the analysis technique to run2014 – 2016 data
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Example : DCAT in run2014

= x5 more data (50% used)

High pT extension
Centrality dependence



Run2015 p+p J/ψ → e+e Data
BG

Mee(GeV)

Future prospect 

• Direct heavy flavor measurement 
• D → K + π

• Non-prompt J/ψ (B → J/ψ)

• VTX (|η|<1.2 )
• J/ψ → e+e @ mid rapidity

• Secondary vertex reconstruction
• Separate prompt & non-prompt J/ψ

• FVTX ( 1.2<|η|<2.2 )
• J/ψ → µ+µ @ forward rapidity
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VTX
FVTX



Summary

• First measurement of separated bottom and charm electrons at RHIC 
energy

• VTX measures displaced tracking with σDCAT=60µm

• Unfolding method successfully separates the bottom & charm contributions

• Bottom and charm are similarly strongly suppressed at pT > 4 GeV/c
• Bottom electrons are less suppressed at pT<4GeV/c

• Bottom electron fraction shows peak structure at pT~3 GeV/c
• Additional constraint to models.

• Data prefers smaller diffusion constant

• 10x statistics in run2014-2016 enables more precise measurement
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Systematic uncertainty on 
unfolding

• Systematic uncertainty is obtained by 
changing the inputs within systematic 
uncertainty for each component.

• Type of uncertainties
1. Unfold uncertainty : Due to data statistics

2. Spectra uncertainty : Invariant HF 
spectrum

3. High-mult Bkg : Mis-associated bg

4. FNP : normalization on photonic BG

5. Ke3 : Ke3 normalization

6. α : Strength of smoothness

7. θprior : Reference hadron shape for 
smoothness

2016/3/1 WWND2016, Takashi HACHIYA 38



Effect on Baryon enhancement 
• A baryon enhancement was observed in strange and non-strange 

hadrons. Same (or similar) enhancement may happen in heavy quarks.
• We tested how the enhancement change the bottom electron fraction

• Input : STAR Λ/Ks in AuAu & pp
• Result

• Bottom fraction was changed but within systematic uncertainty
• We did not include this difference as an additional systematic uncertainty
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