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Heavy guarkonia are good candidates to probe the QGP in heavy ion

collisions because:

radius
* they have large masses and are 368 GeV  0.90 f
(dominantly) produced at the early ' € Sl
stage of the collision, via hard-

scattering of gluons.

3.53GeV 0.72fm
3.1GeV 0.50fm

* they are strongly bound (small radius) 95GeV 0.28fm

and weakly coupled to light mesons.

* as resonances they are easy to measure (as opposed to e.g. open heavy
flavors)

Sensitive to the formation of a quark gluon plasma via color screening.
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J/p production in p+p collisions (reference)
cold nuclear matter effects in d+A collisions
hot nuclear matter effects in A+A collisions

Other resonances (y’, x. and Y)



1. J/w production in p+p collisions

reference for A+A
production mechanism




Production mechanism

Several models available, that differ mainly on how the cc pair formed
during the initial parton (gg at RHIC) is neutralized prior to forming the J/y

« Color Singlet Model (CSM) NLO, NNLO*
— Improves agreement with CDF p; spectra (arxiv:0806.3282)
— NNLO* not applicable below 5-7GeV/c.

— s-channel cut
(allow quarks to be off mass shell before quarkonia formation)

« Color Octet Model (COM) NLO, NNLO*
— Reduction in transverse polarization for NLO. (arxiv:0802.3727v1)

— Soon we will have NLO predictions for RHIC.
But not valid for p; < 3GeV/c.

— NNLO* same as above.

* Color Evaporation Model (CEM)



J/@ production vs rapidity (2005 vs 2006 data)
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Higher statistics and better control over systematics
Excellent agreement with published results

— Better constraints on models



Comparison to models
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Models have absolute normalization. They are not scaled to the data.
CSM+S channel cut, tuned (parametrized) to CDF, does a fairly good job
at reproducing PHENIX data.



J/@ production vs p-+ (2006 data)
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To-do (for experimentalists): have more rapidity bins



J/@ polarization

J/y polarization is measured via A parameter: « A>0 transverse polarization

* A=0 no polarization
* A<0 longitudinal polarization

dN

d cosé

with O the decay lepton angle with
respect to J/y momentum in J/y rest
frame (helicity frame convention)

(see ArXiv:0902.4462v1 for other conventions)

= A(l+ Acos” 0)

COM (LO): predicts transverse polarization at high enough p;
CSM (LO): predicts longitudinal polarization at high enough p;
CEM: predicts no polarization

= J/ @ polarization measurement provides a powerful
discriminating tool between models




J/g polarization at RHIC

arXiv:0806.4001v1
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Measurement performed in helicity frame

« CSM + S channel cut reproduces the mid-rapidity data well but
misses the forward rapidity data by about 20;

« CEM cannot be ruled out;

« COM has no prediction for this p; range.
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2. J/@ production in d+A collisions

cold nuclear matter (CNM) effects

Effects that modify the J/p production in heavy ion
collisions with respect to p+p, without requiring the
formation of a Quark Gluon Plasma
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Cold nuclear matter effects

L . Xiv:0902.4154v1 Pb
« Modification of the parton distribution o ’ e
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To get quantitative value for oy eqyp:

« Chose a nPDF prescription
* Get prediction for cpeq,p = 0, 1, 2, 3 (etc.) mb

« Compare to data (and possibly fit) 12



Published R

A
A /-\UJ
I

Ry

0.5

o ”breaikup

— Best Fitoy, = 2.6%; mb

+11% Global Systematlc 1

NDSG Model

=0,1,2,3,5 mb (top to bottom) -

3 2 4 o0 1 2 3
Rapidity
d+Au
R _ Nlnv
dAu_ Np+p
coII inv

Hﬂhu

(2003 data) Vs rapidity

0.5

R ¢11% Global Systematic -

EKS Model

" Oraakup ™ 0,1,2,3,5 mb (top to bottom) -

—— Best Fitgy,oy,,,= 2.8 mb |

arXiv:0903.4845

A B
-2

4 o0 1 2 3

Rapidity

y<0: Au going side. Large x in Au nuclei
y>0: d going side. Small x in Au nuclei

Two shadowing models are used together with 6,¢4, ffom 1 to 5 mb.
Fit to the data gives similar 6., @nd large error bars (~2mb).
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Enough statistics to provide 4 different
centrality bins.

Systematic errors largely cancel in R,

R., ~1 at negative rapidity
R., < 1 and decreases with centrality at
positive rapidity

Todo:
* Produce Ry,

* Fit 6peqkyp 10 the data
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Extrapolation to Au+Au

Model dependent approach:
Use npdf prescription for both nucleii together with c,¢,,, Obtained

from d+Au data

Data driven approach:

Use R, data vs rapidity and centrality only;
Parametrize as a function of b the impact parameter;
Extrapolate to Au+Au using Glauber model of the
colliding nucleil. [Phys. Rev. C 77, 024912 (2008)]

0™=1.69 GeV?)
& = = =
= S

Limitations: EPSOOLO T
--------- EKS98 “ 0.6 [
1. Nuclear pdf have errors, that must be ... HKNO7 (LO) & 04 |
.. ——  EPS08 ”“Q'; 0.2
accountec! for when derlyl_ng CGaps OF _____. S (LO) 0.0 BT el ol e
extrapolating to A+A collisions. | 10
arXiv:0902.4154v1 o
2. d+A cold nuclear matter effects
might not factorize easily in A+A, 5& <o +
due to gluon saturation.
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3. J/g production in A+A collisions

Hot nuclear matter effects, QGP
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As long as error bars on extrapolated CNM are so large, it is hard to

derive any conclusion on J/y anomalous
models of J/p production in QGP

suppression, or compare to
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4. Other resonances (§’, %, Y)

19



Other heavy quarkonia resonnances should have :
« similar production mechanism (CSM, COM, etc.)
 similar cold nuclear matter effects (shadowing, nuclear absorption, etc.)

* interaction mechanism in QGP (sequential melting, recombination, etc.)
but with different parameters/relative weights

— Additional constrains to models (that should aim at reproducing all
resonances simultaneously)

Additionally they are needed to constrain feed-down contributions to J/y,

and thus measure previous effects for direct J/y only, to which most
predictions apply.
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Y’ production in p+p vs p
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Y. production in p+p
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Y production in p+p
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Conclusion
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p+p collisions:
Increased statistics and better control over systematics
New observables (J/y polarization)

d+A collisions:

Much larger statistics available. Analysis is in progress.

New issues to be addressed for quantifying CNM effects and
extrapolate to A+A.

A+A collisions:
No conclusion as long as CNM are so poorly constrained.

Studying other resonances might provide additional handles to
discriminate between models and disentangle the mechanism at play,
although they are all quite statistically limited so far.
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Things to come (1):

Y’ and Yin d+Au @ 200 GeV (2008 data)
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Should give some insight on CNM effects on other resonances
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Things to come (2):

J/g and Y in p+p @ 500 GeV (2009 data)
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BNL and RHIC

length: 3.83 km

Capable of colliding
any type of nuclei

Energy:
500 GeV for pp
200 GeV for AA
(per N-N collision)

Two large experiments are still operating today: PHENIX and STAR
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The PHENIX experiment

Central arm
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Highlight on CSM + S-channel cut

 From CSM, allow off mass shell quarks before quarkonia (Q) formation.

« Requires a four point function to couple the c-cbar to J/y state (gg%Qg).

Note: four point function is parametrized to reproduce the cross section
measurements at CDF, then compared to other data.
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Production mechanism and CNM
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Lines are for 6eaep = 0, 1, 2, 3and 4 mb
EKS98 shadowing is used for both figures.

Two different production mechanism are used for the J/yp resulting
in different CNM, because the parton x domain corresponding to a
given y bin is different.
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arxiv:0801.0220
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Cu-Cu and Au-Au ratios match well where they overlap.

In central collisions there is more suppression at forward
rapidity than at mid-rapidity.
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Elliptic flow (principle)

The elliptic flow, v,, characterize
the azimuthal anisotropy of
particle emission with respect to
the collision reaction plane.

Observed v, for non-central
collisions is interpreted as a
conseguence of an anisotropic
pressure gradient in the overlapping
region of the colliding nuclel.

This requires an early thermalization of the medium.
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Elliptic flow for light hadrons and heavy flavors
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aa VS P+ 1n Cu+Cu
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J/yp elliptic flow in Au+Au
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« Measurement is limited by statistics.

V,=-0.10+ 0.10 + 0.02 £ 0.03 (averaged over all py, all rapidity)
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- Expect about V2 improvement on errors for final results
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RCP
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