

PHENIX Decadal Plan

W.A. Zajc for the PHENIX Collaboration

(this talk available at

http://www.phenix.bnl.gov/phenix/WWW/publish/zajc/sp/presentations/DecadalPlan/PacDec03.pdf)

)3-Dec-03

Brazil	University of São Paulo, São Paulo DH	Y	1	and the state
China	Academia Sinica, Taipei, Taiwan			CANE T
	China Institute of Atomic Energy, Beijing		13mg	12
	Peking University, Beijing			514 - 4
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand			
	Dapnia, CEA Saclay, Gif-sur-Yvette			7.1
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay			
	LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau			A
	SUBATECH, Ecòle des Mines at Nantes, Nantes			
Germany	University of Münster, Münster	10.		
Hungary	Central Research Institute for Physics (KFKI), Budapest	855		
Construction - Construction - Construction	Debrecen University, Debrecen			
	Eötvös Loránd University (ELTE), Budapest	1 a	n de george Se se la sectoria	
India	Banaras Hindu University, Banaras		100 m	
	Bhabha Atomic Research Centre, Bombay			
Israel	Weizmann Institute, Rehovot			X
Japan	Center for Nuclear Study, University of Tokyo, Tokyo			* 1
	Hiroshima University, Higashi-Hiroshima		Werns 1810 fer 2 UNITED NATIONS	
	KEK, Institute for High Energy Physics, Tsukuba		Asperture	
	Kyoto University, Kyoto	12 C	ountries:	57 Institutio
	Nagasaki Institute of Applied Science, Nagasaki			
	RIKEN, Institute for Physical and Chemical Research, Wako			
	RIKEN-BNL Research Center, Upton, NY U	JSA A	bilene Christ	ian University, Ab
	University of Tokyo, Bunkyo-ku, Tokyo	E	Brookhaven N	ational Laborator
	Tokyo Institute of Technology, Tokyo	. U	Iniversity of C	alifornia - Riversi
	University of Tsukuba, Tsukuba	. U	Iniversity of C	colorado, Boulder
	Waseda University, Tokyo	C	columbia Univ	ersity, Nevis Lab
S. Korea	Cyclotron Application Laboratory, KAERI, Seoul	F	Iorida State U	Jniversity, Tallaha
	Kangnung National University, Kangnung	G	eorgia State	University, Atlant
	Korea University, Seoul	U	Iniversity of I	llinois Urbana Cha
	Myong Ji University, Yongin City	le	owa State Uni	versity and Ames
	System Electronics Laboratory, Seoul Nat. University, Seoul	L	os Alamos Na	ational Laborator
	Yonsei University, Seoul	L	awrence Live	ermore National La
Russia	Institute of High Energy Physics, Protovino	U	Iniversity of N	lew Mexico, Albu
	Joint Institute for Nuclear Research, Dubna	N	lew Mexico S	tate University, La
	Kurchatov Institute Moscow	0	Dept. of Chem	istry, Stony Brool
	Reference institute, moscow			
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg	g 🕻	0ept. Phys. an	d Astronomy, Sto
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg St. Petersburg State Technical University, St. Petersburg	g D C	0ept. Phys. an 0ak Ridge Nat	d Astronomy, Sto ional Laboratory,
Sweden	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg St. Petersburg State Technical University, St. Petersburg Lund University, Lund	g D C	Dept. Phys. an Dak Ridge Nat Jniversity of T	d Astronomy, Sto ional Laboratory, ennessee, Knoxv

ns; 460 Participants*

lene, TX , Upton, NY de, Riverside, CA со oratories, Irvington, NY ssee, FL , GA mpaign, Urbana-Champaign, IL Laboratory, Ames, IA , Los Alamos, NM boratory, Livermore, CA uerque, NM s Cruces, NM Univ., Stony Brook, NY ny Brook Univ., Stony Brook, NY Oak Ridge, TN lle, TN Vanderbilt University, Nashville, TN *as of July 2002

PH%ENIX The Immediate "Problem"

- How to fit
 - □ 150+ pages
 - □ 60+ figures
 - 10+ tables
 - □ 160+ references
 - into one 45 minute talk?
- Not to mention PHENIX Beam Use Proposal
 - 30+ pages
 - Explicit run requests for RHIC Run-4 to Run-8
- Not to mention the problem of planning discovery physics for next 10 years...

- A. Do nothing (maintain status quo)
 - PHENIX would have a vital and interesting research program for the next decade
 - □ (for the next next decade as well)
 - □ Summary of the Executive Summary:

"There's obviously 10 years of physics to do at RHIC" (A. Caldwell, 03-Dec-03)

- **B. Significantly increase RHIC luminosity**
 - Yes! (RHIC-II)
 - Extends PHENIX reach to truly rare probes
- **C. Install targeted upgrades to PHENIX**
 - □ Yes! (ongoing)
 - Greatly extends PHENIX sensitivities in various channels (even without extended reach provided by RHIC-II)
- D. Do B and C
 - □ Ideal!
 - □ A truly compelling program of broadest possible scope

)3-Dec-03

PH*ENIX Executive Summary (1)

- The PHENIX Collaboration has developed a plan for the detailed investigation of quantum chromodynamics in the next decade. The demonstrated capabilities of the PHENIX experiment to measure rare processes in hadronic, leptonic and photonic channels, in combination with RHIC's unparalleled flexibility as a hadronic collider, provides a physics program of extraordinary breadth and depth. A superlative set of measurements to elucidate the states of both hot and cold nuclear matter, and to measure the spin structure of the proton has been identified. The components of this plan include
 - Definitive measurements that will establish the nature of the matter created in nucleus+nucleus collisions, that will determine if the description of such matter as a quark-gluon plasma is appropriate, and that will quantify both the equilibrium and non-equilibrium features of the produced medium.
 - Precision measurements of the gluon structure of the proton, and of the spin structure of the gluon and sea-quark distributions of the proton via polarized proton+proton collisions.
 - Determination of the gluon distribution in cold nuclear matter using proton+nucleus collisions.

- Each of these fundamental fields of investigation will be addressed through a program of correlated measurements in some or all of the following channels:
 - Particle production at high transverse momentum, studied via single particle inclusive measurements of identified charged and neutral hadrons, multi-particle correlations and jet production.
 - □ Direct photon, photon+jet and virtual photon production.
 - □ Light and heavy vector mesons.
 - □ Heavy flavor production.

- A portion of this program is achievable using the present capabilities of PHENIX experimental apparatus, but the physics reach is considerably extended and the program made even more compelling by a proposed set of upgrades which include
 - □ An aerogel and time-of-flight system to provide complete $\pi/K/p$ separation for momenta up to 10~GeV/c.
 - A vertex detector to detect displaced vertices from the decay of mesons containing charm or bottom quarks.
 - □ A hadron-blind detector to detect and track electrons near the vertex.
 - □ A micro-TPC to extend the range of PHENIX tracking in azimuth and pseudo-rapidity.
 - □ A muon trigger upgrade to preserve sensitivity at the highest projected RHIC luminosities.
 - □ A forward calorimeter to provide photon+jet studies over a wide kinematic range.

ENIX Compare to Conceptual Design Report (29-Jan-93)

3 - 18

• Conclusions:

- ~All goals accomplished
 - As permitted by available integrated luminosity
 - For Au+Au (d+Au) only
- Much remains
 - Truly rare probes in Au+Au
 - ♦ Species scans
 - Energy variation
- □ Spin!
- Proton-nucleus!

Table 3.1: Physics Variables to be Measured by the PHENIX Experiment

CHAPTER 3. PHYSICS CAPABILITIES

Quantity to be Measured	Category*	Physics Objective
$e^+e^-, \mu^+\mu^-$		
$\bullet \rho \rightarrow \mu^+ \mu^- / \rho \rightarrow \pi \pi, d\sigma / dp_\perp$	BCD	Basic dynamics $(T, \tau, \text{ etc.})$ for a hot gas,
$\omega \rightarrow e^+e^-/\omega \rightarrow \pi\pi, d\sigma/dp_\perp$		transverse flow, etc.
• ϕ -meson's width and $m_{\phi \rightarrow e^+e^-}$	QGP	Mass shift due to chiral transition (C.T.) [2]
$\phi \rightarrow e^+e^-/\phi \rightarrow K^+K^-$	QGP	Branching ratio change due to C.T. [3]
ϕ -meson yield (e ⁺ e ⁻)	ES	Strangeness production $(gg \rightarrow s\bar{s})$
$J/\psi \rightarrow e^+e^-, \mu^+\mu^-$	QGP, QCD	Yield suppression and the distortion
$\psi' \rightarrow \mu^+ \mu^-$		of $p_{\rm T}$ spectra due to Debye screening
$\Upsilon, \rightarrow \mu^+ \mu^-$		in deconfinement transition (D.T.) [4]
• $1 < m_T(l^+l^-) < 3 \text{ GeV}$	ES, QGP	Thermal radiation of hot gas, and
(rate and shape)		effects of QGP [5, 6, ?]
• $m_{l+l-} > 3 \text{ GeV} \rightarrow \mu^+ \mu^-$	QCD	A-dependence of Drell-Yan, and
	QGP	thermal $\mu^+\mu^-$ [5, 6, 7, 8]
• $\sigma \rightarrow \pi \pi, e^+e^-, \gamma \gamma$	QGP	Mass shift, narrow width due to C.T. [2]
$e\mu$ coincidence		
• $e\mu$, $e(p_T > 1 \text{ GeV/c})$	QCD, QGP	cc̄ background, charm cross section [9]
Photons		
• $0.5 < p_T < 3 \text{ GeV/c } \gamma$	ES, QGP	Thermal radiation of hot gas, and
(rate and shape)		effect of QGP [6, 7]
$p_T > 3 \text{ GeV/c } \gamma$	QCD	A-dependence of QCD γ
π^0, η spectroscopy	BCD	Basic dynamics of hot gas, strangeness in η
• $N(\pi^0)/N(\pi^+ + \pi^-)$ fluctuations	QGP	Isospin correlations and fluctuations [10, 11]
High $p_T \pi^0, \eta$ from jet	QGP	Reduced dE/dx of quarks in QGP [12]
Charged Hadrons		
p_T spectra for π^{\pm} , K [±] , p, \bar{p}	BCD	Basic dynamics, flow, T, baryon density,
		stopping power, etc.
	QGP	Possible second rise of $\langle p_T \rangle$ [13]
$\phi \rightarrow K^+K^-$	ES, QGP	Branching ratio, mass width [3, 14]
• K/ π ratios	ES	Strangeness production
$\pi\pi$ + KK HBT	BCD	Evolution of the collision, R_{\perp}
	QGP	Long hadronization time $(R_{\text{out}} \gg R_{\text{side}})$ [15]
Antinuclei	QGP	High baryon susceptibility due to C.T.? [16]
high p_T hadrons from jet	QGP	Reduced dE/dx of quarks in QGP [12]
Global		
• N _{tot} (total multiplicity)	BCD	Centrality of the collision
$dN/d\eta$, $d^2N/d\eta d\phi$, $dE_T/d\eta$	BCD	Local energy density, entropy
	QGP	Fluctuations, droplet sizes [17]
* BCD = Basic collisions dynamic	nics. ES	= Thermodynamics at early stages.
QGP = Effect of QGP phase	transition. QC	CD = Study of basic QCD processes.

PH%ENIX The Fundamental Issue

- The exciting physics is at the (nb to pb) level
- The exciting physics requires
 - Large integrated luminosities
 - **⇒**Time
 - Higher luminosity
 - Machine development
- The exciting physics spans (at least) 3 programs
- Each is suffering at 27 weeks per year
 - □ Example 1: J/Y in Au+Au
 - □ Example 2: A_{LL}
 - □ Example 3: Gluon shadowing

- The machine achievements in the first 3 years of RHIC operations have been *spectacular*:
 - 3 different colliding species
 - 3.5 energies for Au-Au (19, 56, 130, 200) GeV
 - First ever polarized hadron collider
 - Design luminosity for Au-Au
 - □ (Etc.)

• Physics has been produced at "all" cross-sections:

□ Heavy lons

- barn: dN_{ch}/dη vs N_{part} <u>PRL 86, 3500 (2001)</u>
- ♦ mb : v₂(p_T)
- nucl-ex/0305013 PRL 88, 022301 (2002)

(to appear in PRL)

- ↓µb : R_{AA}(p_T)
 ♦ nb : J/Ψ (limit)
- <u>nucl-ex/0305030</u>

(to appear in PRC)

- 🗆 Spin
 - Life (for A_{LL}) begins at ~inverse pb
 - ♦ A start from Run-3? (0.35 pb⁻¹)
- Future output of the program
 - Depends crucially on developing large integrated luminosities
 - □ Adversely affected by original 37 weeks → 27 weeks per year
 - Enhanced by proposed program of upgrades

- A long time ago in a place far far away...
- "37 weeks of operations"

PH^{*}ENIX

Proton+Nucleus Collisions

- To be sure, a crucial control for A+A measurements
- But an intrinsically valuable program in its own right:
- Executive Summary: "Determination of the gluon distribution in cold nuclear matter using proton+nucleus collisions."
- Together, lead to a broad program:
 - Gluon shadowing over broad kinematic range (J/Ψ and Y's, γ's, γ+jet)
 - Heavy quark production, propagation in a cold nucleus (high p_T single leptons)
 - Cronin effects, fragmentation function modification, parton energy loss (high p_T hadrons, jet+jet, γ+jet)
 - Correlation of all of the above with precision measurements of "centrality".
- An essential component in our decadal planning
 - □ Driven in part by success of Run-3 d+Au
 - □ Difficult to accommodate in near term
 - □ Will need to periodically revisit as
 - ♦ Higher luminosities become available
 - ◆ Other systems and/or energies require comparison data

PH^{*}ENIX

Run-3 J/Y's

- 2.7 nb⁻¹ d+Au
 - □ Provides clear J/Y signals
 - With modest discrimination power to test shadowing models
- A clear need for
 - 20 nb⁻¹ : shadowing
 - □ 200 nb⁻¹ : Ψ', Drell-Yan
 - □ 2000 nb⁻¹ : Y's
- We were not able to accommodate these runs in our 5-year planning exercise
- A high priority item in our decadal planning

1.15

0.9

0.65

0.4

errors not included.

-2.5

dd/nVp

Rapidity

2.5

Extended Reach in d+Au

2.5

1.5

2

 $P_{\tau}(GeV/C)$

3.5

3

13-Dec-03

What that first 20 nb⁻¹ delivers □ Extensive measurements ♦ at higher √s \bullet lower x₂ Then the next 200 nb⁻¹ ...

Table 2.10: Estimated physics yields for d+Au collisions for several processes with various integrated luminosities. For the lower rate process such as the Υ this illustrates the much larger luminosities needed in order to reach this physics.

$\int \mathcal{L} dt$	Process	North Muons	South Muons	Electrons
$20 \ nb^{-1}$	J/Ψ	8.3k	6.4k	3.3k
$200 \ nb^{-1}$	Ψ'	1650	1280	660
$200 \ nb^{-1}$	Υ	47	40	56
$200 \ nb^{-1}$	Drell-Yan $(M > 4 \ GeV)$	4.9k	3.8k	$1 \mathrm{k} \ (M > 3 \ GeV)$
$200 \ nb^{-1}$	$D\bar{D}~(M > 1.6~GeV)$	25k	20k	
$200 \ nb^{-1}$	$D o \mu X$	2B	2B	
$200 \ nb^{-1}$	$B ightarrow \mu X$	$5\mathrm{M}$	$5\mathrm{M}$	

- Executive Summary: "Precision measurements of the gluon structure of the proton, and of the spin structure of the gluon and sea-quark distributions of the proton via polarized proton+proton collisions."
- An integral part of our program, our collaboration, our experiment, our future
- Original desiderata:
 - □ √s = 200 GeV: 320 pb⁻¹, <P> = 70%
 - □ $\sqrt{s} = 500 \text{ GeV}$: 800 pb⁻¹, <P> = 70%
- Presently

□ $\sqrt{s} = 200 \text{ GeV}$: 0.35 pb⁻¹, <P> = 27%

□ Room for "substantial" improvement in P⁴ L

PH*ENIX Our First "Spin" Publication

- "Midrapidity Neutral Pion Production in Proton-Proton Collisions at √s = 200 GeV", accepted for publication in PRL on 19 September 2003, hep-ex/0304038
- Important confirmation of of theoretical foundations for spin program
 - Results consistent with pQCD calculation
 - Favors a larger gluon-to-pion FF (KKP)
 - Provides confidence for proceeding with spin measurements via hadronic channels
- Run3 results reproduce Run2
 results
 - Confirm the Run-3 data reliability and consistency
 - Run3 data reaches even higher p_T's; results will be finalized soon

PH ENIX Towards Our First "Real" Spin Publication

- Presented at Dubna spin conference (Sep-03)
- Extensive (ongoing) study of systematics
 - Bunch shuffling,
 background studies,
 A_L checks, ...
 - Relative luminosity precision ~ 2.5 x 10⁻⁴
 - Contribution to A_{LL} < 0.2%</p>
 - Dominated by statistical errors from 0.22 pb⁻¹ sample
- A very important proof-of-principle for spin program!

)3-Dec-03

PH*ENIX Near-Term Spin Prospects

- Run-3 Preliminary result based on
 - □ **<P> = 27%**
 - □ 0.35 pb⁻¹ recorded
- For future projections:
- Run-4 (37 weeks only)
 <P> = 40%
 - □ 0.5 pb⁻¹ recorded
 - Factor 2.8 improvement in statistical error
- Run-5 (27 weeks scenario)
 - □ <**P**> = 50%
 - □ 1.2 pb⁻¹ recorded
 - Factor 6.8 improvement in statistical error

PH*ENIX Long-Term Spin Prospects

- Given sufficient time/resources/successes to increase
 - □ Luminosity
 - Polarization
 - Absolute polarimetry
 - Energy

Outstanding

What Will It Take?

- A dedicated program of machine development
- A commitment to increase RHIC running time

Run	# of weeks	P_B	\sqrt{s}	$\int \mathcal{L} dt$	physics	remarks
			(GeV)	(pb^{-1})		
Run-1	(3)	-	-	-	One ring	
					commissioned	
Run-2	(5)+3	0.15	200	0.15	$\sigma(\pi^0, J/\psi); \mathcal{A}_N(\pi)$	
Run-3	(3)+5	0.27	200	0.35	First $\mathcal{A}_{LL}(\pi^0)$	
Run-4	(5)+0	0.50	200	-	Machine/PHENIX	new AGS warm
					development	snake
					towards high $\mathcal L$	
					and P_B	
Run-5	5 - 10	0.50	200	3-10	$\Delta g/g$ with $\mathcal{A}_{LL}(\pi^0)$	new AGS cold
						snake
$\operatorname{Run-6}/7$	19	0.70	200	158	$\Delta g/g$ with	Si-VTX detector
					$\mathcal{A}_{LL}(\gamma, \gamma) +$	
					$jet, c/b, J/\psi)$	
Run-8/9	19-29	0.70	500	540 - 966	$\Delta g/g$ with $\mathcal{A}_{LL}(\gamma)$	W-trigger
					and $\Delta \bar{q}/\bar{q}$ with	
					$\mathcal{A}_L(W^{\pm})$	

Table 2.6: Summary of the PHENIX Spin goals for the upcoming several years. For the "# of weeks", the number in parenthesis shows the beam weeks required for commissioning. All future physics topics presented in the table involve longitudinal polarization; there is ongoing discussion regarding transverse polarization.

A decade of only 27 weeks per year severely jeopardizes the spin program (the entire program)

PH^{*}ENIX

Heavy Ion Physics

- Executive Summary: "Definitive measurements that will establish the nature of the matter created in nucleus+nucleus collisions, that will determine if the description of such matter as a quark-gluon plasma is appropriate, and that will quantify both the equilibrium and non-equilibrium features of the produced medium."
- This remains a very challenging task
- Will require measurement of
 - Particle production at high transverse momentum, studied via single particle inclusive measurements of identified charged and neutral hadrons, multi-particle correlations and jet production.
 - Direct photon, photon+jet and virtual photon production.
 - Light and heavy vector mesons.
 - □ Heavy flavor production.
- Dominated by rare probes
 - This program (too) is luminosity limited
 - This program (too) is compromised by 27 weeks/ year

PH $\overset{}{\times}$ ENIX Run-4 Luminosity ($\phi \rightarrow e^+e^-$)

- A quest to develop highest possible integrated luminosity in full energy Au+Au running
 - To eliminate statistical ambiguity in many production channels
 - $\Box \text{ Example: } \Phi \rightarrow e^+e^-$

♦ Run-2

Signal= $101 \pm 47 (\text{stat})^{+56}_{-20} (\text{sys})$ • Run-4

• x10-15 yield

○ Improved S/B

PHXENIX Run-4 Luminosity (Direct Photons)

- A quest to develop highest possible integrated luminosity in full energy Au+Au running
 - To eliminate statistical ambiguity in many production channels
 - Example: Direct photons
 - Run-2
 - Statistics limited at ~4 GeV/c

Run-4

 Extend this to ~10 GeV/c

FIG. 1: Spectrum $dN/d^2 p_{\perp} dy$ of photons at y = 0 for central collision of gold nuclei at $\sqrt{S_{NN}} = 200$ GeV at RHIC. We show the photons from jets interacting with the medium (solid line), direct hard photons (long dashed), bremsstrahlung photons (short dashed) and thermal photons (dotted).

PH ENIX Run-4 Luminosity (Other Examples)

- A quest to develop highest possible integrated luminosity in full energy Au+Au running
 - To eliminate statistical ambiguity in many production channels
 - Other examples:
 - Low-mass pairs
 - Charm flow
 - "Jet" correlations

PH*ENIX Run-4 Luminosity (J/Y)

- A quest to develop highest possible integrated luminosity in full energy Au+Au running
 - To eliminate statistical ambiguity in many production channels
 - □ Example: J/Ψ production
 - 27 week scenario:

 2.6σ (e⁺e⁻)
 3.2σ (μ⁺μ⁻)
 (in 0-20% centrality bin)

FIG. 6: (Color online) The J/ψ invariant yield per binary collision is shown from proton-proton reactions and three exclusive centrality ranges of Au-Au reactions all at $\sqrt{s_{NN}} =$ 200 GeV. The lowest curve is a calculation including "normal" nuclear absorption in addition to substantial absorption in a high temperature quark-gluon plasma [16]. The curve above this is including backward reactions that recreate J/ψ . The statistical model [17] result is shown as a dotted curve for midcentral to central collisions just above that. The four highest dashed curves are from the plasma coalescence model [15] for a temperature parameter of T = 400 MeV and charm rapidity widths of $\Delta y = 1.0, 2.0, 3.0, 4.0$, from the highest to the lowest curve respectively.

Run-4 Luminosity

- The PHENIX Beam Use Proposal anticipates ~120 µb⁻¹ (recorded)
- A primary goal of this effort is a definitive measurement of J/Ψ yields
- Recognized by PAC:
 - The highest priority for heavy ions is a substantial running period of Au+Au at the highest RHIC energy of 200 A-GeV. It is important to integrate sufficient luminosity to open up the channel of heavy quarkonia studies for experimental and theoretical investigation. Measurements of the quarkonium channels are needed to characterize the system created and to complete our baseline program of exploring novel features of dense QCD matter such as the quark-gluon plasma. In addition, high quality measurements of low cross section processes will provide crucial constraints on the nature of the dense medium created.
- The 120 $\mu b^{\text{-1}}$ is a very significant reduction from our long-standing request for 300 $\mu b^{\text{-1}}$. Driven by
 - □ (In part) revised C-A D guidance
 - In part) desire to include 5 weeks of critically needed beam development for spin
- This too has been recognized by the PAC:
 - "We recommend that a benchmark of 300 inverse microbarns delivered luminosity be set for the Au-Au running period. We urge the laboratory to be flexible in time allocation so that a significant J/Psi signal in central Au+Au collisions is observed."

- Definitive measurements require integrated
 Iuminosities well in excess of our Run-4 projections
- Of course would like measurements with similar p_T or x_T reach in lighter systems, lower energy

Topic	Signals	$p_T (\text{GeV/c})$	$\sim { m Lum}$
			(μb^{-1})
hadron	single π^0 (energy loss,	17	300
suppression	flow, pQCD recovered)		
modification	γ - charged/neutral	$7~{ m GeV}~\gamma$	300
of known E_{jet}	correlations	$7 { m GeV} \gamma$	300
(energy loss)		10 GeV γ	1000
jet modification	charged-charged and	> 5 GeV leading hadron	300
	neutral-charged		
(back-to-back jets)	2 hadron correlations	> 7 GeV leading hadron	3000
in-medium	identified hadron	3-4 GeV leading hadron	300
fragmentation	correlations	+ 2-3 GeV partner	
function	≥ 2 particles detected	> 4 GeV leading hadron	> 300
	(1	requires aerogel)	

Heavy Flavor

- Definitive measurements require integrated
 Iuminosities in excess of our Run-4 projections
- Of course would like measurements with similar p_T or x_T reach in lighter systems, lower energy

Upgrades

- Executive Summary: "A portion of this program is achievable using the present capabilities of PHENIX experimental apparatus, but the physics reach is considerably extended and the program made even more compelling by a proposed set of upgrades which include"
 - An aerogel and time-of-flight system to provide complete $\pi/K/p$ separation for momenta up to 10~GeV/c. (First portion installed, ready for Run-4)
 - A vertex detector to detect displaced vertices from the decay of mesons containing charm or bottom quarks. (Proposal submitted to DOE)
 - A hadron-blind detector to detect and track electrons near the vertex. (Active R&D program)
 - A micro-TPC to extend the range of PHENIX tracking in azimuth and pseudo-rapidity. (Active R&D program)
 - A muon trigger upgrade to preserve sensitivity at the highest projected RHIC luminosities. (Proposal to NSF)
 - □ A forward calorimeter to provide photon+jet studies over a wide kinematic range. (Proposal to NSF)

- Upgrades to existing apparatus are a key component
 of our Decadal Plan
- The PHENIX Upgrades strategy
 - Leverages > \$100M investment in PHENIX
 - Takes advantage of already extensive PHENIX experience with
 - Significant year-by-year upgrades
 - High speed DAQ
 - o Runs (1, 2, 3, 4): (20, 40, 80, 160) MB/s
 - Front End:
 - Sub-system electronics, Data Collection Modules designed for x10 Au+Au "Blue Book" luminosity
 - o Back end:
 - Event Builder, Level-2 (+3?) trigger system commodity based, "upgradeable" via Moore's law

Physics-sensitive parallel triggers

Run-1 Configuration

- Two central arms
 - Mechanically
 ~complete
 - Roughly half of aperture instrumented
- Global detectors
 - Zero-degree Calorimeters (ZDCs)
 - □ Beam-Beam Counters (BBCs)
 - Multiplicity and Vertex Detector (MVD, engineering run)

PH*ENIX From Run-1 to Run-2

Run-3 and Beyond

Run-3: Design Configuration!

Central Arm Tracking Drift Chamber Pad Chambers Time Expansion Chamber Muon Arm Tracking Muon Tracker: North Muon Tracker Calorimetry **PbGl PbSc Particle Id Muon Identifier: North Muon Identifier** RICH TOF TEC **Global Detectors BBC ZDC/SMD Local Polarimeter Forward Hadron Calorimeters** NTC **MVD Online Calibration and Production**

PH^{*}ENIX

Run-1 to Run-3 Capsule History

Ż

Run	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot}	p-p Equivalent	Data Size
01	2000	Au-Au	130	1 μb ⁻¹	10M	0.04 pb ⁻¹	3 TB
02	2001/2002	Au-Au	200	24 μb ⁻¹	170M	1.0 pb ⁻¹	10 TB
		p-	200	0.15 pb ⁻¹	3.7G	0.15 pb ⁻¹	20 TB
03	2002/2003	d-Au	200	2.74 nb ⁻¹	5.5G	1.1 pb ⁻¹	46 TB
		p-p	200	0.35 pb ⁻¹	6.6G	0.35 pb ⁻¹	35 TB

03-Dec-03

Run-4 Additions

Aerogel Cell

 $(11x22x11 \text{ cm}^3)$ **Aerogel in here Aluminum Box**

 The Aerogel detector is a threshold Cerenkov counter •Aerogel is a very low density, SiO₂ – based solid Aerogel has index of refr. between gases & liquids. Ident. charged particles in a range inaccessible with other technologies.

DAQ and Trigger

PHENIX has made a *major* effort to

- □ Design and build a system capable of extracting all physics at \geq design luminosity
- □ Triggers commissioned, used in Run-2, extended for Run-3

PH*ENIX (Existing) PHENIX DAQ

• A high BW system that smoothly accommodates additional sub-systems

🔵 🤇 Run Cont	rol for Big Owned by stev	/e															
File Options	Mode																
Download								Don't click this bu	tton								
Stop]	Configu	red					BB LL1 Status North Glink						So	uth Glink		
Pause	Run Number:	78367													Run	Control Log	
Onen	Data Taking Mode:	Production Run Started											ls:	suing command	1: scaler re	ad activate	<u>^</u>
Run Tyne -	Outstanding Granule Cou	int: 0											ls	suing command suing command	i: start i: stop		
Junk	Data Path:	none											ls:	suing command	1: scaler re	ad deactivate	
	Data File Directory: Data File Name:	/a/junkdata none											ls	suing command suing command	i: scaler re	ad activate	
	Buffer Box: Example States	phnxbox4.phenix.b	onl.gov					_					ls	suing command	l: start		
	GTM.MUID.S Started					ata							_				•
Granule	GTM Status	DCM Status										АТ	P Status			FRCS	tatus
Names	LI Run Busy OK LI	Busy Glink OK	Name	#Events	Event Size	Data Rate	Butt Usage Rea	d Error Busy	UK Name	#Events #	L2Accept	#Read Err	Assem Rate	Ave Data Rate	ATP OK E		EBC.0
DD 14	7903		SEBZDC.0	150600	0.592 KB	4.167 MB/s 1.309 MB/s	0.898	0	ATP.1	6456	0	0	78.554/s	5.077 MB/s		#Recieved	149993
	7903 0		SEB.DC.W.0 SEB.DC.W.1	150432 150406	1.501 KB 0.498 KB	3.697 MB/s 1.229 MB/s	0.961 0.961	0	ATP.2 ATP.3	6865 6755	0	0	83.480/s 80.137/s	5.508 MB/s 5.281 MB/s		#Assigned #Completed	149993 149610
20	7909		SEB.PC.W.O	150720	1.962 KB	4.250 MB/s	0.977	0	ATP.4	6808	0	0	83.071/s	5.546 MB/s		Avg Event Rat	e1965.239/s
	7921		SEB.EMC.W.B	150520	1.858 KB	4.224 MB/s 4.164 MB/s	0.883	0	ATP.6	6706	0	0	80.444/s	5.302 MB/s		Avg Assem La Avg ATP Load	0.000
	7932 0 0		SEB.EMC.W.T SEB.DC.F.O	150120 150701	1.893 KB 2.510 KB	3.973 MB/s 5.378 MB/s	0.820 0.957	0	ATP.7 ATP.8	6403 5787	0	0	77.571/s 70.562/s	5.126 MB/s 4.591 MB/s			
			SEB.DC.E.1	150792	1.245 KB	2.630 MB/s	1.000	0	ATP.9	6559	0	0	78.851/s	5.120 MB/s			
	7933		SEBTEC.E.0	150372	4.363 KB 3.064 KB	6.532 MB/s	0.898	0	ATP.C	6433	0	0	79.304/s 77.945/s	5.090 MB/s			
	0		SEBTEC.E.4 SFRTFC.F.1	150812 150427	2.625 KB 3.175 KB	5.635 MB/s 7.616 MB/s	1.000 0.990	0	ATP.D ATP.F	6384 6168	0	0	77.754/s 77.041 (s	5.104 MB/s 5.057 MB/s			
	0		SEBTEC.E.2	150400	2.487 KB	6.113 MB/s	0.488	0	ATP.F	6264	0	Ō	77.009/s	5.005 MB/s			
Š	0		SEBTEC.E.3	151000	2.984 KB	5.627 MB/s	0.859	0	ATP.1	u 6260 1 6330	0	0	75.460/s	4.956 MB/s			
	7939		SEB.TOF.E.O SEB.RICH.E.O	151040 150239	3.424 KB 2.399 KB	6.513 MB/s 5.378 MB/s	0.430 0.936	0	ATP.1	2 6096	0	0	73.479/s 73.440/s	4.847 MB/s			
Ŵ	7942 0		SEB.EMC.E.T	150455	1.478 KB	3.163 MB/s	0.910	0	ATP.1	6 5938	0	Ō	72.162/s	4.673 MB/s			
	/942		SEBEMC.E.B.1	150372	4.162 KB 5.289 KB	9.994 MB/s 9.996 MB/s	0.881	0	ATP.13	7 6400 8 5687	0	0	78.568/s 69.226/s	4.576 MB/s			
	7942 0		SEBMUTRSST1.0	150600	1.197 KB 0.790 KB	2.641 MB/s 1.954 MB/s	0.898		ATP.1	9 7016	0	0	84.710/s	5.426 MB/s			
	Ő		SEB.MUTR.S.ST3.0	150520	1.170 KB	2.617 MB/s	0.861	ů –									
	7942		SEBMUTR.S.ST3.1	150520	1.145 KB 0.768 KB	2.543 MB/s 1.630 MB/s	1.000										
	0		SEB.MUTR.N.ST2.0	150761	1.240 KB 0.862 KB	2.643 MB/s 1.720 MB/s	0.980	0									
	0		SEB.MUTR.N.ST3.1	150640	0.985 KB	2.175 MB/s	0.938	ů 💻					PA				
	7942 0		SEB.MUID.N SEB.ERT.E	150432	0.815 KB 0.412 KB	1.972 MB/s 0.786 MB/s	0.961	0					D 1	MB	1S		
			SEBERT.W SERFCAL	151040	0.412 KB 6.536 KB	0.788 MB/s 13.883 MB/s	0.938 0.961	0					-				
	7968 0		SEB.MUID.S	150890	0.81	1.560 MD/5	0.914										
			sum		70. 27 KB	101.995 MB/S											

Tailing /tmp/RC-BigJog

RCBEExecuting Command: gettriglist Processing command: gettriglist In GetTriggerList RCBEExecute complete

PH*ENIX (Existing) PHENIX Triggers

Extensive experience with running (and using) many parallel triggers to

Preserve bandwidth

Detached Panel

_ **=** ×

□ Access rare signals (e.g., high p_T photons, electrons)

Scaler Monitor

Trig	Status	Raw	Live	Scaled	Raw Rate	Live Rate	Scaled Rate	Live Time	Live Time(RA)	Raw/Ref	Live/Ref	Scaled/Ref
Clock	Enabled	-868843911	-1424211516	6820	9.383 MHz	7.899 MHz	18.786 Hz	1.639	0.842	1.0000	1.0000	1.0000
BBCLL1>=1	Enabled	5420766	4544244	44992	14.669 KHz	12.362 KHz	122.396 Hz	0.838	0.843	0.0016	0.0016	6.5152
ZDCNS	Enabled	3553046	2978694	5945	9.621 KHz	8.098 KHz	16.150 Hz	0.838	0.842	0.0010	0.0010	0.8597
ERT_2x2	Disabled	3730471	0	0	10.109 KHz	0.000 Hz	0.000 Hz	0.000	0.000	0.0011	0.0000	0.0000
ERT_2x2&BBCLL1	Enabled	1374115	1155670	1	3.714 KHz	3.136 KHz	0.000 Hz	0.841	0.844	0.0004	0.0004	0.0000
MUIDLL1_S_Hor&MUIDS_1D	Disabled	0	0	0	0.000 Hz	0.000 Hz	0.000 Hz			0.0000	0.0000	0.0000
ERT_Gamma1&BBCLL1	Enabled	31272	26283	26283	86.577 Hz	73.031 Hz	73.031 Hz	0.840	0.844	0.0000	0.0000	3.8875
ERT_Gamma2	Enabled	11494	9632	9632	31.656 Hz	27.465 Hz	27.465 Hz	0.838	0.867	0.0000	0.0000	1.4620
ERT_Gamma2&BBCLL1	Enabled	9098	7622	7622	25.580 Hz	22.227 Hz	22.227 Hz	0.838	0.866	0.0000	0.0000	1.1832
MUIDLL1_S_Horizontal	Disabled	0	0	0	0.000 Hz	0.000 Hz	0.000 Hz			0.0000	0.0000	0.0000
ERT_Electron&BBCLL1	Enabled	97065	81802	81802	251.030 Hz	210.536 Hz	210.536 Hz	0.843	0.838	0.0000	0.0000	11.2070
MUIDLL1_S_Vertical	Disabled	0	0	0	0.000 Hz	0.000 Hz	0.000 Hz			0.0000	0.0000	0.0000
MUIDLL1_S_Vert&MUIDS_1D	Disabled	0	0	0	0.000 Hz	0.000 Hz	0.000 Hz			0.0000	0.0000	0.0000
ERT_Phi&BBCLL1	Enabled	402045	340575	6677	1.044 KHz	881.646 Hz	17.254 Hz	0.847	0.845	0.0001	0.0001	0.9184
ERT_Gamma3&BBCLL1	Enabled	136997	115617	11561	372.946 Hz	315.807 Hz	31.533 Hz	0.844	0.848	0.0000	0.0000	1.6785
MUIDS_1D	Disabled	2392654	0	0	6.591 KHz	0.000 Hz	0.000 Hz	0.000	0.000	0.0007	0.0000	0.0000
MUIDS_1D&BBCLL1	Enabled	140005	117087	10644	381.937 Hz	321.240 Hz	29.249 Hz	0.836	0.840	0.0000	0.0000	1.5570
MUIDS_1D1S^BBCLL1	Enabled	91 98 2	76758	76758	249.172 Hz	209.587 Hz	209.587 Hz	0.834	0.840	0.0000	0.0000	11.1565
MUIDN_1D	Disabled	2056883	0	0	5.612 KHz	0.000 Hz	0.000 Hz	0.000	0.000	0.0006	0.0000	0.0000
MUIDN_1D&BBCLL1	Enabled	43034	36047	12015	117.680 Hz	99.366 Hz	33.093 Hz	0.838	0.847	0.0000	0.0000	1.7616
BBCLL1_SyncErr	Disabled	221976	0	0	8.760 Hz	0.000 Hz	0.000 Hz	0.000	0.000	0.0000	0.0000	0.0000
MUIDN_1D1S^BBCLL1	Enabled	4032	3370	3370	10.662 Hz	9.418 Hz	9.418 Hz	0.836	0.879	0.0000	0.0000	0.5014
ZDCS/ZDCN	Enabled	21769707	18260976	6086	59.037 KHz	49.769 KHz	16.569 Hz	0.839	0.843	0.0063	0.0063	0.8820
MUIDLL1_S_Ver&Hor	Disabled	0	0	0	0.000 Hz	0.000 Hz	0.000 Hz			0.0000	0.0000	0.0000
NTCNSwide	Disabled	13418995	0	0	36.440 KHz	0.000 Hz	0.000 Hz	0.000	0.000	0.0039	0.0000	0.0000
PPG (Pedestal)	Enabled	364	292	292	1.017 Hz	0.923 Hz	0.923 Hz	0.802	0.905	0.0000	0.0000	0.0491
PPG(Test Pulse)	Enabled	363	312	312	0.973 Hz	0.791 Hz	0.791 Hz	0.860	0.850	0.0000	0.0000	0.0421
PPG(Laser)	Enabled	363	302	302	0.973 Hz	0.695 Hz	0.695 Hz	0.832	0.700	0.0000	0.0000	0.0370
BBCLL1 >=1 (noVertexCut)	Enabled	11680613	9789626	3263	31.702 KHz	26.711 KHz	8.932 Hz	0.838	0.843	0.0034	0.0034	0.4755

PH*ENIX (Existing) PHENIX Triggers

- Extensive experience with running (and using) many parallel triggers to
 Preserve bandwidth
 - Access rare signals (e.g., high p_T photons, electrons)

Name	Bit ∎ask	Scale Down	State	Raw Trigger Count	Live Trigger Count	Scaled Trigger Count
Clock	0x0000002	9999999	Enabled	2471058950	1312746464	1419
BBCLL1>=1	0x00000004	600	Enabled	20843242	19345800	32189
ZDCNS	0x0000008	1500	Enabled	21225805	19623002	13073
MUIDS_2D&BBCLL1	0x00000010	0	Enabled	39723	36628	36628
ERT_2x2&BBCLL1	0x00000020	999999	Enabled	2706996	2503501	2
MUIDLL1_S_H&V&BBCLL1	0x00000040	999999	Disabled	90	0	0
ERT_Gamma1&BBCLL1	0x0000080	0	Enabled	128860	120024	120024
ERT_Gamma2	0x00000100	0	Enabled	50154	46646	46646
ERT_Gamma2&BBCLL1	0x00000200	0	Enabled	34976	32547	32547
MUIDLL1_S_Horizontal	0x00000400	999999	Disabled	27488819	0	0
ERT_Electron&BBCLL1	0x0000800	0	Enabled	141652	130904	130904
MUIDLL1_S_Vertical	0x00001000	999999	Disabled	2414036	0	0
MUIDLL1_S_H&V&MUIDS_1D&BBCLL1	0x00002000	999999	Disabled	17	0	0
ERT_Phi&BBCLL1	0x00004000	999999	Enabled	1021894	945115	0
ERT_Gamma3&BBCLL1	0x00008000	999999	Enabled	526554	490405	0
MVIDS_1D	0x00010000	999999	Disabled	42707677	0	0
MUIDS_1D&BBCLL1	0x00020000	40	Enabled	584401	541532	13208
MUIDN_2D&BBCLL1	0x00040000	0	Enabled	24513	22688	22688
MUIDS_1D1S*BBCLL1	0x00080000	1	Enabled	373585	346012	173006
MUIDN_1D	0x00100000	999999	Disabled	21446038	0	0
MUIDN_1D&BBCLL1	0x00200000	8	Enabled	210357	195137	21681
BBCLL1_SyncErr	0x00400000	999999	Disabled	60522161	0	0
MUIDN_1D1S*BBCLL1	0x00800000	0	Enabled	37956	35100	35100
ZDCS ZDCN	0x01000000	999999	Enabled	128154098	118492332	118
MUIDLL1_S_Ver Hor	0x02000000	999999	Disabled	29863878	0	0
MUIDLL1_S_Ver&Hor	0x04000000	999999	Disabled	38977	0	0
NTCN&MUIDN_1D	0x0800000	999999	Disabled	2307683	0	0
DDC (D 1 + 1)	0.1000000		7 17 1	1000	1510	1510

03-Dec-03

PH^{*}ENIX

Central Arm Upgrades

Enhanced Particle ID

- 💋 TRD (east)
- Aerogel/TOF (west)

High p_T phenomena: π , K, p separation to 10 GeV/c

charm/beauty: displaced vertex e+e- continuum: Dalitz rejection

- flexible magnetic field
- VTX: silicon barrel vertex tracker
- HBD and/or TPC

)3-Dec-03

PH^{*}ENIX Silicon Vertex Tracker (VTX)

Pixel barrel(50 μm x 425 μm)Strip barrels(80 μm x 3 cm)Endcap (extension)(50 μm x 2 mm)

1 - 2% X_0 per layer barrel resolution < 50 μ m endcap resolution < 150 μ m

PH^{*}ENIX Physics Beyond Current Reach

- VTX Goal: Provide key measurements so far inaccessible at PHENIX:
 - Detailed study of the hot and dense matter formed in Au+Au collisions
 - Precise measurement of charm production
 - Charm enhancement in pre-thermal stage
 - Reference for J/ψ measurement
 - Beauty measurement in Au+Au collisions
 - Flavor dependence of QCD energy loss in hot matter
 - Thermal di-lepton pairs (charm background)
 - High p_T charged particle (p_T > 10 GeV/c)
 - $\Box \Delta G$ measurement in broad x range in polarized p+p collision
 - Charm/beauty production
 - γ+jet measurement
 - □ Gluon shadowing in broad *x* range
 - by heavy quark production
- These measurements
 - □ *Complement and enhance* the present physics program
 - □ *Fully exploit* existing rare event capabilities of PHENIX

PH ENIX Physics From Precise Charm Measurements

Is there pre-thermal charm production?

Precise charm measurement is required to detect small enhancement

Does charm flow? Does charm suffer energy loss?

Thermal dileptons from the QGP?

Charm measurement in p_T>3 GeV/c is required to see energy loss effect Di-leptons from charm decay must be identified and subtracted to detect the thermal di-leptons from the QGP in 1-3 GeV region

These measurements are not possible or very limited without the VTX

)3-Dec-03

Spin Physics with VTX

- Measurement of Gluon polarization by Heavy flavor production
 - \Box c, b \rightarrow e, μ + displaced vertex ×
 - $\Box \quad \mathbf{B} \xrightarrow{} \mathbf{displaced} \ \mathbf{J}/\psi$
 - $\Box \quad \mathbf{D} \rightarrow \mathbf{K} \pi \text{ at high pt}$
- VTX measurement
 of displaced vertex
 - □ Improved S/B → higher sensitivity to $\Delta G(x)$
 - Much broader x coverage

VTX significantly increases the x coverage of $\Delta G(x)$ measurement

ENIX Measurement Of Gluon Shadowing With VTX

Heavy-flavor measurement in p+A

 $\hfill\square$ Single lepton and J/ Ψ with displaced vertex

- Heavy-flavor production via g+g \rightarrow q+ \overline{q}
- Extracting gluon structure function nuclei, shadowing

vertex detector provides broader range in x into predicted shadowing region (x ~ 10⁻²)
baseline

VTX significantly increases the x coverage of for shadowing study

PH ENIX Expected Signal yield in Run-8

Table 3 Event rate calculated for selected physics processes. The effective integrated luminosity used in the calculation is shown in Table 2. For the meaning of "no VTX" column, see the text. In both of Au+Au and p+p, the collision energy $\sqrt{s_{xM}}$ is 200 GeV per nucleon pair. The yields include the anti-

particle channels. The DCA cut value for the single electron measurement is DCA>200 μ . For the lowest pT bin, the number with DCA>400 μ is shown in parenthesis.

Process	no VTX	Yield	Yield with DCA
			cuts
$AuAu \rightarrow c \rightarrow e$			
$1.0 \le p_{\rm T} \le 2.0 ~{\rm GeV/c}$	Yes	3M	150K (40K)
$2.0 \le p_{\rm T} \le 3.0 ~{\rm GeV/c}$	Limited	130K	6K
$3.0 < p_T < 4.0 \text{ GeV/c}$	No	5K	0.3K
$4.0 < p_{\rm T} < 5.0 {\rm GeV/c}$	No	1K	50
5.0 <pt<6.0 c<="" gev="" td=""><td>No</td><td>0.2K</td><td>10</td></pt<6.0>	No	0.2K	10
$AuAu \rightarrow b \rightarrow e$			
$1.0 \le p_{\rm T} \le 2.0 ~{\rm GeV/c}$	No	200K	50K (20K)
$2.0 < p_T < 3.0 \text{ GeV/c}$	No	70K	15K
$3.0 < p_{\rm T} < 4.0 ~{\rm GeV/c}$	Limited	17K	3K
$4.0 < p_{\rm T} < 5.0 ~{\rm GeV/c}$	Limited	4K	0.7K
$5.0 < p_{\rm T} < 6.0 ~{\rm GeV/c}$	Limited	1K	0.2K
$Au+Au \rightarrow D \rightarrow K\pi$			
p_{T} >2 GeV/c	No	4900 (S/B~0.1%)	1000 (S/B~3%)
$p_{\rm T}$ >3 GeV/c	No	2900 (S/B~1%)	600 (S/B ~5%)
$Au+Au \rightarrow B \rightarrow J/\psi \rightarrow ee$	No	100	50
$pp \rightarrow c \rightarrow e$			
1< <i>p</i> _T <3 GeV/c	Yes	10M	0.5M
p_{T} >3 GeV/c	No	20 K	1K
$pp \rightarrow b \rightarrow e$			
p_{T} >1 GeV/c	No	0.9M	0.2M
$pp \rightarrow \gamma + jet$			
4 <p_<5 c<="" gev="" td=""><td>No</td><td>300K</td><td>N.A.</td></p_<5>	No	300K	N.A.
5 <p<sub>T<6 GeV/c</p<sub>	No	150K	N.A.
$6 < p_{\rm T} < 7 {\rm ~GeV/c}$	No	70K	N.A.
$7 < p_T < 8 \text{ GeV/c}$	No	40K	N.A.
8 <p_<9 c<="" gev="" td=""><td>No</td><td>20K</td><td>N.A.</td></p_<9>	No	20K	N.A.
$9 < p_{\rm T} < 10 {\rm ~GeV/c}$	No	12K	N.A.
$pp \rightarrow B \rightarrow J/\psi \rightarrow ee$	No	560	280

Table 4 Summary of physics measurement gained by the VTX detector. The column "without VTX" shows the present capability of PHENIX, while the measurement range with the VTX detector is shown in the column "with VTX". If the process is not measurable, it is marked as "No".

Process	Without VTX	With VTX
$c \rightarrow e$	$0.5 < p_{\rm T} < 2.5$ C limited	$0.3 \le p_{\rm T} \le 6 { m GeV/c}$
$D \rightarrow K \pi \ (p_{\mathrm{T}} > 2 \ \mathrm{GeV/c})$	significance in	$> 7 \sigma$ significance in central
	Au+Au)	Au+Au
Total charm yield	~ 20 % limited	~ 10 %
$(c \rightarrow e)/(b \rightarrow e)$ ratio	NO	~ 1 %
$b \rightarrow e$	$p_{\mathrm{T}} > 3 \text{ GeV/c}$ dependence marginal	$1 \le p_{\mathrm{T}} \le 6 \mathrm{~GeV/c}$
$B \rightarrow J/\psi$	NO	$\Delta\sigma/\sigma \sim 10$ - 15 %
Total beauty yield	NO	~ 10 %
High $p_{\rm T}$ charged	$p_{\rm T} \leq 10 \ { m GeV/c}$ limited	$p_{\rm T} < 15 - 20 ~{\rm GeV/c}$
$\Delta G(\mathbf{x})$ from $c \rightarrow e$	0.03 < x < 0.08 limited	0.01 < x < 0.15
$\Delta G(\mathbf{x})$ from $b \rightarrow e$	NO	$0.02 \le x \le 0.15$
$\Delta G(x)$ from g+jets	NO	0.04 < x < 0.3
Nuclear shadowing of G(x)	0.03 < x < 0.3 limited	0.01 < x < 0.3

Many of these measurements are not possible or very marginal without the VTX

Low-Mass *e+e* Pairs:

"combinatorial pairs" ee { dm {100MeV/^-10 total background 10 S/B ~ 1/500 Ş 10 background Irreducible charm all signal +'₊ +I 10 charm signal 10 0.2 Mee Invariant mass [GeV]

Need Dalitz rejection and accurate charm measurement

from open charm

PH KENIX Dalitz Rejection with a Hadron Blind Detector

• HBD concept:

- windowless Cherenkov detector
- □ CF₄ as radiator and detector gas
- □ Csl reflective photocathode
- □ Triple GEM with pad readout

- Dalitz rejection via opening angle
 - □ HBD is a proximity focused Cherenkov detector with ~ 50 cm radiator length
 - Provides minimal signals for charged particle

Bandwidth 6-11eV, $N_0 \approx 940 \text{ cm}^{-1}$ $N_{pe} \approx 40!$ No photon feedback Low granularity, relatively low gain

PH ENIX Large Acceptance Tracker (TPC)

TPC readout plane

GEMs are used for both TPC and HBD

- Inner tracker with fast, compact
 TPC
 - Provides large acceptance to PHENIX
 - provides tracking through the central magnetic field
 δp/p ~ 2% p
 - **R&D** status:
 - Joined R&D with STAR and LEGS
 - □ Working drift cell with CF₄ and GEM's
- Outlook for 2004-2006
 - Continue joined effort with STAR
 - Build prototype TPC
 - Develop readout electronics

Combination with HBD:

- Backup solution for Dalitz rejection
 - Adds tracking and charge information
 - □ More robust rejection
 - Both detectors in one gas volume
 - Independent R&D promising

PH*ENIX HBD/TPC Strategy and R&D

VTX HBD TPC*

- Run-4 Au-Au
- Run-5 Si-Si & p-p
- Run-6 Au-Au 63 GeV
- Run-7 p-p
- Run-8 Au-Au
- Run-9 p-p 500 GeV

*Low mass setting: +/- field configuration HBD alone, no VTX no TPC or TPC/HBD no VTX

)3-Dec-03

- Follow R&D for HBD and TPC independently
 - □ If HBD R&D successful:
 - ♦ Realize HBD within 2 years
 - ♦ use in low mass e⁺e⁻ run
 - TPC serves as tracking detector
 - installed for non e⁺e⁻ run
 - - Combined HBD and TPC only potential option to measure e⁺e⁻ continuum at RHIC
- Funding through DOE (and matching contributions)
 - □ HBD: R&D \$250k, Constr. < \$1.5M
 - □ TPC: R&D \$900k, Constr. ~\$4.5M
 - **Participating institutions**
 - BNL, Columbia U., Tokyo U., Stony Book U., Weizmann Institute
 - + Florida Institute of Technology

PH ENIX Endcap Silicon Tracker

Open Beauty: B => J/ψ => μ ⁺+ μ ⁻

A-A

Technology option:

- □ "mini" strips (~0.1 x 1 mm²)
- PHX chip daughter of the FPIX2 for BTEV

1.2<|η|<2.4

- R&D effort
 - collaboration with FNAL being initiated
 - Expect 2-3 year development
- Anticipate funding through DOE and foreign contributions
 - □ R&D \$900k, Construction ~\$2-3M per endcap
- Participating institutions
 - Effort spearheaded by LANL, interest of many groups involved in silicon barrel, seeking new collaborations

PH^{*}ENIX

NEMC

40cm

- Forward physics $1.0 < \eta < 2.6$
 - □ Focus of recent 2 day workshop at UIUC
- Extended physics reach with NEMC
 - □ ∆q/q polarizations via spin dependent Wproduction

1400[[]

1200

- □ Small *x*-physics in d-A
- Extended A-A program
 - high p_T phenomena: π^0 and γ -jet
 - χ_c in photonic decays

- □ EM calorimeter ~45 X/X_o
- Tungsten w/ Silicon readout
- Tailcatcher
 - Crude Hadronic calorimeter
 - \Box Cu or stainless 5 λ

43°

PHXENIX NEMC and Muon Trigger

Enhanced first level muon trigger:

Topology:NEMC + muIDp-Cut:U-Tracker + muIDTiming:D-Trackerp-threshold:Cerenkov + muID

• First level trigger for high luminosity

- Increased background rejection
- □ W production in p-p 500 GeV/c
- Upsilon production with RHIC II luminosity

• Schedule for NEMC and μ -trigger:

- Proposal to NSF in 2004
- □ Staged approach:
 - Gradual improvement of μ-trigger starting 2006
 - NEMC implemented by 2008
- Participating institutions:
 - RIKEN, RBRC, Kyoto, Iowa SU, UC Riverside, U New Mexico, U Colorado, BNL, UIUC, U Tennessee, Nevis

Seeking funding through NSF and foreign contributions

PHXENIX A (Semi)-Hermetic PHENIX

03-Dec-03

PH*ENIX Upgrades Physics Summary

inclusive π^0

 Note: This provides (first!) ~complete mapping of

ρ ω φ **J/**Ψ Υ

states

13-	De	C -	03	1

Importance of Luminosity and Detector Upgrades

RHIC II Au-Au luminosity increase 10x (lifetime) + 2-3x (bunch length)

 $p_T < 20 \text{ GeV}$

Physics topic High p_T

XENIX

-	γ-jet	$E_{\gamma} < 10 \text{ GeV}$	$E_{\gamma} > 15 \text{ GeV}$	TPC/VTX
Lepton pairs	LMR	75000 HBD/TPC		
	ρ.ω.φ	6000-8000 each	>50000 each	
Charmonium	J/ψ	4500	>50000	
	ψ'	900	>10000	
	Y	-	>800 VTX	(/ TPC
Open heavy flavor	$c \rightarrow e$	$1 < p_T < 6 \text{ GeV}$		
	$b \rightarrow e$	$1 < p_T < 6 \text{ GeV}$	$p_T > 6 GeV$	ντχ
	$D \rightarrow \pi k$	p _T <4 GeV	$p_T > 6 \text{ GeV}$	
µ-arms	J/ψ(ψ')	20000 (5000)	>200000 (50	000)
	χ	~20000	>200000	NEMC
	Y	250	>2500	μ-trigger
	$B \rightarrow J/\psi \rightarrow \mu\mu$	2000	>20000	fVTX

critical for measurement

desirable for precision measurement

Run-8 (<1nb⁻¹) **RHIC II** (>10nb⁻¹)

р_т > 25 GeV

PH ENIX (Draft) NSAC Performance Guidelines

- The PHENIX Decadal Plan addresses issues in
 - "Physics of High Temperature and High Density Hadronic Matter"

"Hadronic Physics"

		1
Year	Milestones:	
2 05	Measure J/ ψ production in Au + Au at $\sqrt{s_{NN}} = 200$ GeV.	
20.5	Measure flow and spectra of multiply-strange baryons in Au + Au at $\sqrt{s_{NN}} = 200$ GeV.	
2007	Measure high transverse momentum jet systematics vs. $\sqrt{s_{NN}}$ up to 200 GeV and vs. system size up to Au + Au.	
NA	Perform realistic three-dimensional numerical simulations to describe the medium and the conditions required by the collective flow measured at RHIC	
2010	Measure the energy and system size dependence of J/ψ production over the range of ions and energies available at RHIC.	
2010	Measure e ⁺ e ⁻ production in the mass range $500 \le m_{e+e-} \le 1000 \text{ MeV/c}^2$ in $\sqrt{s_{NN}}= 200$ GeV collisions.	
2010 NA	Complete realistic calculations of jet production in a high density medium for comparison with experiment.	
2012	Determine gluon densities at low x in cold nuclei via p + Au or d +Au collisions	

This is an extraordinarily broad physics program that can be accomplished within the existing and upgraded PHENIX experiment

YearMilestones:2008Make measurements of spin carried by the glue in the proton with polarized proton- proton collisions at center of mass energy, $\sqrt{s_{NN}} = 200$ GeV.2008Extract accurate information on generalized parton distributions for parton momentum fractions, x, of 0.1 - 0.4, and squared momentum change, -t, less than 0.5 GeV ² in measurements of deeply virtual Compton scattering.2009NA2009Complete the combined analysis of available data on single π , η , and K photo- production of nucleon resonances and incorporate the analysis of two-pion final states into the coupled-channel analysis of resonances.2010Determine the four electromagnetic form factors of the nucleons to a momentum- transfer squared, Q ² , of 3.5 GeV ² and separate the electroweak form factors into contributions from the u, d and s-quarks for Q ² < 1 GeV ² .2010Characterize high-momentum components induced by correlations in the few-body nuclear wave functions via (e,e ^R N) and (e,e ^R NN) knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the 'He(ē,e ^T p) ³ H reaction.2011Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV ² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions $g_1(x, Q2)$ and $g_2(x, Q2)$ for $x=0.2$ - 0.6, and $1 < Q2 < 5 GeV2$ for both protons and neutrons.2012Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range $Q2 = 0.1 - 7$ GeV ² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons.20		
 Make measurements of spin carried by the glue in the proton with polarized proton-proton collisions at center of mass energy, √s_{NN} = 200 GeV. Extract accurate information on generalized parton distributions for parton momentum fractions, x, of 0.1 - 0.4, and squared momentum change, –t, less than 0.5 GeV² in measurements of deeply virtual Compton scattering. Complete the combined analysis of available data on single π, η, and K photo-production of nucleon resonances and incorporate the analysis of two-pion final states into the coupled-channel analysis of resonances. Determine the four electromagnetic form factors of the nucleons to a momentum-transfer squared, Q², of 3.5 GeV² and separate the electroweak form factors into contributions from the u, d and s-quarks for Q² < 1 GeV². Characterize high-momentum components induced by correlations in the few-body nuclear wave functions via (e,e^RN) and (e,e^RNN) knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the '<i>He</i>(<i>ë</i>,<i>e^T</i>)³<i>H</i>' reaction. Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions g₁(x, Q²) and g₂(x, Q²) for x=0.2-0.6, and 1 < Q² < 5 GeV² for both protons and neutrons. Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range Q² = 0.1 - 7 GeV² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons. Measure flavor-identified q and q contributions to the spin of the proton via the longitudinal-spin asymmetry of W production. Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of general	Year	Milestones:
 proton collisions at center of mass energy, √s_{NN} = 200 GeV. 2008 NA Extract accurate information on generalized parton distributions for parton momentum fractions, x, of 0.1 - 0.4, and squared momentum change, -t, less than 0.5 GeV² in measurements of deeply virtual Compton scattering. Complete the combined analysis of available data on single π, η, and K photo- production of nucleon resonances and incorporate the analysis of two-pion final states into the coupled-channel analysis of resonances. Determine the four electromagnetic form factors of the nucleons to a momentum- transfer squared, Q², of 3.5 GeV² and separate the electroweak form factors into contributions from the u, d and s-quarks for Q² < 1 GeV². Characterize high-momentum components induced by correlations in the few-body nuclear wave functions via (e,e^rN) and (e,e^rNN) knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the ⁴<i>He</i>(<i>ë</i>,<i>e^rD</i>)³<i>H</i> reaction. Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions g₁(x, Q²) and g₂(x,Q²) for x=0.2- 0.6, and 1 < Q² < 5 GeV² for both protons and neutrons. Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range Q² = 0.1 - 7 GeV² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons. Measure flavor-identified q and q contributions to the spin of the proton via the longitudinal-spin asymmetry of W production. Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of generalized parton distributions including flavor and spin depen	2008	Make measurements of spin carried by the glue in the proton with polarized proton-
 2008 Extract accurate information on generalized parton distributions for parton momentum fractions, x, of 0.1 - 0.4, and squared momentum change, -t, less than 0.5 GeV² in measurements of deeply virtual Compton scattering. 2009 Complete the combined analysis of available data on single π, η, and K photoproduction of nucleon resonances and incorporate the analysis of two-pion final states into the coupled-channel analysis of resonances. 2010 Determine the four electromagnetic form factors of the nucleons to a momentum-transfer squared, Q², of 3.5 GeV² and separate the electroweak form factors into contributions from the u, d and s-quarks for Q² < 1 GeV². 2010 Characterize high-momentum components induced by correlations in the few-body nuclear wave functions via (e,e^TN) and (e,e^TNN) knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the '<i>He</i>(<i>ē</i>,<i>e^Tp</i>)³<i>H</i> reaction. 2011 Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions g₁(x, Q²) and g₂(x,Q²) for x=0.2-0.6, and 1 < Q² < 5 GeV² for both protons and neutrons. 2012 Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range Q² = 0.1 - 7 GeV² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons. 2014 Measure flavor-identified q and q contributions to the spin of the proton via the longitudinal-spin asymmetry of W production. 2014 Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction. 	V	proton collisions at center of mass energy, $\sqrt{s_{NN}} = 200$ GeV.
 0.5 GeV² in measurements of deeply virtual Compton scattering. 2009 NA Complete the combined analysis of available data on single π, η, and K photoproduction of nucleon resonances and incorporate the analysis of two-pion final states into the coupled-channel analysis of resonances. 2010 Determine the four electromagnetic form factors of the nucleons to a momentum-transfer squared, Q², of 3.5 GeV² and separate the electroweak form factors into contributions from the u, d and s-quarks for Q² < 1 GeV². 2010 Characterize high-momentum components induced by correlations in the few-body nuclear wave functions via (e,e^TN) and (e,e^TNN) knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the ⁴He(ē,e^Tp)³H reaction. 2011 Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions g₁(x, Q²) and g₂(x,Q²) for x=0.2-0.6, and 1 < Q² < 5 GeV² for both protons and neutrons. 2012 Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range Q² = 0.1 - 7 GeV² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons. 2014 Measure flavor-identified q and q contributions to the spin of the proton via the longitudinal-spin asymmetry of W production. 2014 Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction. 	²⁰⁰⁸	Extract accurate information on generalized parton distributions for parton momentum fractions, x, of 0.1 - 0.4, and squared momentum change, -t, less than
2009 NAComplete the combined analysis of available data on single π , η , and K photo- production of nucleon resonances and incorporate the analysis of two-pion final states into the coupled-channel analysis of resonances.2010 NADetermine the four electromagnetic form factors of the nucleons to a momentum- transfer squared, Q^2 , of 3.5 GeV ² and separate the electroweak form factors into contributions from the u, d and s-quarks for $Q^2 < 1$ GeV ² .2010 NACharacterize high-momentum components induced by correlations in the few-body nuclear wave functions via (e,e'N) and (e,e'NN) knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the ${}^{4}He(\vec{e},e'\vec{p}){}^{3}H$ reaction.2011 NAMeasure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV ² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions $g_1(x, Q^2)$ and $g_2(x,Q^2)$ for $x=0.2$ - 0.6, and $1 < Q^2 < 5$ GeV ² for both protons and neutrons.2012 NAMeasure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range $Q^2 = 0.1 - 7$ GeV ² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons.2013 2014 		0.5 GeV ² in measurements of deeply virtual Compton scattering.
 2010 Determine the four electromagnetic form factors of the nucleons to a momentum-transfer squared, Q², of 3.5 GeV² and separate the electroweak form factors into contributions from the u, d and s-quarks for Q² < 1 GeV². 2010 Characterize high-momentum components induced by correlations in the few-body nuclear wave functions via (e,e'N) and (e,e'NN) knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the ⁴He(ē,e^cp)³H reaction. 2011 Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions g₁(x, Q²) and g₂(x,Q²) for x=0.2-0.6, and 1 < Q² < 5 GeV² for both protons and neutrons. 2012 Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range Q² = 0.1 - 7 GeV² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons. 2014 Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of generalized parton distributions including flavor and spin dependence. 2014 Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon 	2009 NA	Complete the combined analysis of available data on single π , η , and K photo- production of nucleon resonances and incorporate the analysis of two-pion final states into the coupled-channel analysis of resonances.
 2010 Characterize high-momentum components induced by correlations in the few-body nuclear wave functions via (e,e'N) and (e,e'NN) knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the ⁴He(ē,e'p)³H reaction. 2011 NA Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions g₁(x, Q²) and g₂(x,Q²) for x=0.2-0.6, and 1 < Q² < 5 GeV² for both protons and neutrons. 2012 Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range Q² = 0.1 - 7 GeV² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons. 2013 Measure flavor-identified q and q contributions to the spin of the proton via the longitudinal-spin asymmetry of W production. 2014 Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of generalized parton distributions including flavor and spin dependence. 2014 Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon 	²⁰¹⁰	Determine the four electromagnetic form factors of the nucleons to a momentum- transfer squared, Q^2 , of 3.5 GeV ² and separate the electroweak form factors into contributions from the u, d and s-quarks for $Q^2 < 1 \text{ GeV}^2$.
2011 Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV ² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions g ₁ (x, Q ²) and g ₂ (x,Q ²) for x=0.2-0.6, and 1 < Q ² < 5 GeV ² for both protons and neutrons. 2012 Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range Q ² = 0.1 - 7 GeV ² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons. 2015 Measure flavor-identified q and q contributions to the spin of the proton via the longitudinal-spin asymmetry of W production. 2014 Perform lattice calculations and low moments of generalized parton distributions including flavor and spin dependence. 2014 Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction.	2010 NA	Characterize high-momentum components induced by correlations in the few-body nuclear wave functions via (e,e'N) and (e,e'NN) knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the ${}^{4}He(\vec{e},e'\vec{p}){}^{3}H$ reaction.
 2012 Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range Q² = 0.1 - 7 GeV² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons. 2015 Measure flavor-identified q and q contributions to the spin of the proton via the longitudinal-spin asymmetry of W production. 2014 Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of generalized parton distributions including flavor and spin dependence. 2014 Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction. 	²⁰¹¹	Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV ² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions $g_1(x, Q^2)$ and $g_2(x, Q^2)$ for x=0.2-0.6, and $1 < Q^2 < 5$ GeV ² for both protons and neutrons.
 Measure flavor-identified q and q contributions to the spin of the proton via the longitudinal-spin asymmetry of W production. Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of generalized parton distributions including flavor and spin dependence. Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction. 	2012 NA	Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range $Q^2 = 0.1 - 7 \text{ GeV}^2$ and measure the electro- and photo-production of final states with one and two pseudoscalar mesons.
 2014 Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of generalized parton distributions including flavor and spin dependence. 2014 Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction. 	2015	Measure flavor-identified q and \overline{q} contributions to the spin of the proton via the longitudinal-spin asymmetry of W production.
2014 Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction.	²⁰¹⁴ A	Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of generalized parton distributions including flavor and spin dependence.
	²⁰¹⁴	Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction.

PH^{*}ENIX

The Benefits of the Original 37 weeks

Total Integrated Luminosity

- The C-A D guidance provide a quantitative model in which we can assess the severe impact of 37 → 27 weeks
- It's "only" a factor of 2??
- A factor of 2 is HUGE !

 It's our challenge as a community to make this case as strongly as possible.

- PHENIX successes in Runs 1-3 have paralleled those of the accelerator
- Ongoing, productive enterprise engaged in timely publication of an extraordinarily broad spectrum of results (Au+Au, p+p, d+Au)
- Proposed program will extend
 - Investigation of rare processes to address fundamental questions in heavy ion physics
 - Demonstrated spin physics capabilities to higher p_T and to new channels
 - □ Existing d+Au results to much greater levels of sensitivity
- Proposed program depends critically on
 - Timely development of luminosity and polarization through extended periods of beam development and steady running
 - Development of upgrades via sustained R&D funding and timely access to construction funds
- Immense benefit from incremental cost of additional weeks of running time