Physics opportunities with Di-muon analysis at PHENIX - Drell-Yan and quarkonia Kwangbok Lee Los Alamos National Laboratory

pA workshop, 1/9/2013

Quarkonia for Heavy Ion phyiscs

- Quarkonia are produced mostly by gluon fusion and good probes to explore gluon distribution in nucleus.
 - Nuclear absorption (final)
 - Initial state parton energy loss.
 - <- disentangle effects seen at hot nuclear collision.

Drell-Yan for Heavy Ion phyiscs

- Quarkonia measurements are not enough to disentangle the cold nuclear effects.
- The leptons from Drell-Yan process

 (qq -> γ* -> l⁺l⁻, qg->qγ*) does not interact
 with the nuclear medium.
- Ideally suited to separate the initial-state parton energy loss and parton modification, given the absence of final-state effects.

The NA50 experimental ratio of the total J/ψ cross sections and Drell-Yan cross sections as a function of the nuclear length L

Backgrounds under Drell-Yan and control with FVTX/VTX

Vs = 200 GeV simulation, p+p pythia

FVTX/VTX have been successfully installed and working since 2012/2011.

4

- Between 4 GeV/c² and 8 GeV/c² is thought to be dominated by Drell-Yan process and correlated BB.
- We would separate Drell-Yan process and correlated BB which have different decay lengths, using silicon vertex detector, (F)VTX between 4 and 8 GeV/c².
- We would get order of five thousand events for each arm with FVTX with 300 pb⁻¹ (p+p equivalent), current muon arm configuration, efficiencies included.

FVTX operation

- 75 μm pitch strips in radial directon, r and 3.75° along φ direction.
- Cover same pseudorapidity, |η| of 1.2 to 2.4(2.2) with Muon arm.
 Sample momentum fraction, x₂, order of 10⁻³ to 10⁻² for the Drell-Yan.
- Match track with Muon arm +(F)VTX.
 -> Improve mass resolution.
- Measure the primary vertex and secondary decay.
- -> Extract dimuon vertices, DCAs, to distinguish Drell-Yan and heavy flavor decay background.

pA workshop, 1/9/2013

PHENIX J/ ψ R_{dAu} measurement

- Tried to fit the data with shadowing model, EPS09 + breakup cross section.
- The centrality dependence of these J/ψ suppression results at forward rapidity is not well described quantitatively by nuclear-shadowing models that include final-state breakup effects.

y Phys. Rev. Lett. 107, 142301 (2011)

χ_c at mid rapidity

radius [fm]

 T_d/T_c

0.25

2.10

0.36

1.16

0.14

> 4.0

0.28

1.60

hep-ph/0609197v1 H. Satz

- Higher charmonium state(1P) than J/ ψ (1S).
- There are three states of chi_c.
- Radiative decay channel $\chi_c \rightarrow J/\psi + \gamma \rightarrow \mu^+\mu^-(e^+e^-) + \gamma$.
- $R_{\chi c} = (\chi_c \rightarrow J/\psi + \gamma) / (Inclusive J/\psi).$
- Decouple the fraction of decay J/ ψ and direct J/ ψ and check the production mechanism.
- χ_c has weak binding energy than other quarkonia, rather easily break up.

7

0.39

1.17

χ_c at forward rapidity

- We saw the peak, but large uncertainties due to the large backgrounds from low energy photon mess up the χ_c signal.
- Future upgrade with Calorimeter will improve χ_c measurement at forward/mid rapidities.

- Nuclear modification factor, R_{CP} measurement for low mass vector mesons
- Significant suppression at deuteron going direction.
- Stronger suppression for ρ/ω than ϕ and $J/\Psi.$

- The rapidity dependence of the observed suppression at forward and backward rapidities are compatible with lower energy results and a NLO theoretical calculation.
- Expect to separate out Υ of the ground state and the exited states with the future upgrade.

Summary

- Drell-Yan measurement at pA collision is interesting to test initial-state quark modification and parton energy loss at nucleus.
- Ratio of J/ψ / DY and P_T broadening would be interesting to test nuclear modification/absorption.
- (F)VTX can help to separate open HF correlation from Drell-Yan and quarkonia measurement at dimuon channel.
- Future upgrade and (F)VTX would help to improve mass resolution and separate ψ' and excited states of upsilon as well as χ_c .
- See Cesar, John, Joe more for the upgrade.

Back up

Introduction

- Review the PHENIX dimuon/other previous measurements.
- Check the possible improvements/physics.
- This talk is focused on cold nuclear matter physics, not on the spin measurement.

Yield Extraction Examples

- Fitting function: Two Gaussian (φ/ω) + One Relativistc BW (ρ) +Background (Defined by estimated shape)
 - $-\phi$ yields stable when fitting procedure changes
 - $-\rho+\omega$ yields using background subtraction (large uncertainty)

Background Estimation Challenge

- •Addresses the issue of correlated hadrons that decays to $\mu^{+\!/-}$
- Achieved good background description at all mass range

Drell-Yan for Heavy Ion phyiscs

- Drell-Yan process (qq̄ -> γ* -> l+l-) is a good probe to study the quark modification in nucleus and initial-state parton energy loss.
- Ideally suited to isolate the initial-state parton energy loss, given the absence of finalstate effects on the produced dimuon.

Ratio of J/ ψ over DY and P_T broadening

- NA50 data are fit with the QCD based nuclear absorption model.
- PHENIX J/ ψ data show P_T broadening due to the multiple scattering