p+Pb at LHC: pilot run results and prospects for 2013 run from an ATLAS perspective

Brian A. Cole, Columbia University January 7, 2013

p+Pb pilot run

- LHC was operated with:
 - -4 TeV proton beam colliding with
 - -1.57 TeV/nucleon lead (Pb) beam
 - ⇒Center of mass energy 5.02 TeV/nucleon
 - \Rightarrow Center of mass rapidity shift $\Delta y = -0.47$
- 5 hour run w/ integrated lumi of ~ 1 μb⁻¹
 - ⇒2 million events (in ATLAS).

From R. Alemany *et al*, CERN-ATS-Note-2012-094 MD

http://cds.cern.ch/record/1496101

ATLAS Acceptance

p+Pb transverse energy measurement

ΣE_T: Compare p+Pb and Pb+Pb

- In p+Pb, see "global" correlations in centrality observables similar to Pb+Pb.
 - Over scale that differs by factor of ~ 20.
 - -But, much larger fluctuations in p+Pb.
 - ⇒No surprise.

Pb-going ΣE_T (4.9 < η < 3.1)

•For physics, we have concluded that Pb-going ΣΕ_T is useful centrality observable

 $-p_T > 0.4 \text{ GeV}$

 $-|\eta| < 2.5$

p+Pb inclusive dNch/dn

- 1st look at charge particle multiplicity:
 - arXiv:1210.3615: ALICE inclusive, NSD
 - ⇒dN_{ch}/dη/N_{part} 16% lower than in (est.) p-p
- note: in ATLAS, similar trigger has nonnegligible SD contribution

p+Pb inclusive spectra

- 1st look at charged particle spectra
 - arXiv:1210.4520, ALICE inclusive, NSD
 - ⇒R_{pPb} consistent with 1, no suppression at midrapidity, also little or no "Cronin"

Multiplicity and spectra

- Clearly, next step is to study multiplicity and spectra as a function of centrality.
 - And to measure spectra over larger range of pseudo-rapidities.
- Why no results so far?
 - -speaking for ATLAS only, ∃ a significant diffractive contribution to minimum-bias p+Pb cross-section that has complicated the "usual" analysis previously applied @ RHIC & LHC
 - ⇒e.g. application of usual naive Glauber model analysis fails for diffractive excitation of the proton and at large impact parameter
 - ⇒Likely that same problem exists @ RHIC

CMS 2-particle correlations

- 1st observation of ridge in p+Pb collisions.
 - in 2-charged particle correlations
- Growth in yield with multiplicity
 - ⇒Much larger than in p-p
- rapid variation with p_T
 - ⇒due to common p_T bins for both particles

ALICE: 2-particle correlations

- ALICE measurement of 2-charged particle correlations in 60-100% and 0-20% bins
 - based on V0 detector multiplicity
 - ⇒see additional near-side correlation in more central events over |Δη| < 1.8

ALICE: 2-particle correlations

- •ALICE: consider difference between central and peripheral vs $\Delta\eta$ and $\Delta\phi$
 - with fits to $a_0 + a_2 \cos{(2\Delta\phi)}$
 - -and $a_0 + a_2 \cos{(2\Delta\phi)} + a_3 \cos{(3\Delta\phi)}$

ALICE: 2-particle correlations

- Convert the a₂ and a₃ to analog of single particle flow coefficients v₂ and v₃
 - assumes factorization (below)
 - ⇒significant v₂ and v₃ values

ATLAS 2-particle correlations

"peripheral"

"central"

- •charged particles, $|\eta| < 2.5$, $0.5 < p_T < 4$ GeV
 - -see "usual" correlations in peripheral
 - -see ridge + away-side broadening in central

ATLAS 2-particle correlations (2)

"peripheral"

"central"

- •To better see Δη dependence, project ZYAM-subtracted correlation function.
 - -For near ($\Delta \phi < \pi/3$) and away ($\Delta \phi > 2\pi/3$) sides.
 - ⇒In central collisions see ridge and broadening of away-side component relative to peripheral collisions.

ATLAS 2-particle correlations (3)

- Per trigger yields Y(Δφ) integrated over η
 - -peripheral and central
 - ⇒"Ridge" clearly present in central
 - ⇒Similar increase in the away side yield between peripheral, and central collisions

ATLAS 2-particle correlations (4)

- Evaluate integrated per-trigger yields, Y_{int} , near ($\Delta \phi < \pi/3$) and away ($\Delta \phi > 2\pi/3$)
 - -Yield grows with increasing ΣE_T similarly on near and away sides
 - Difference between away and near yields≈ constant
 - ⇒ constant "recoil": dijet + p cons. + lowp_T resonances

Why E_T not N_{ch} for "centrality"?

- There is an auto-correlation between N_{ch} and the number of particles & pairs
 - ⇒Distorts the per-trigger yields from the "recoil" contribution at low N_{ch}
 - ⇒Why the different behavior of away-near difference at large N_{ch} / ΣE_T?

ATLAS 2-particle correlations (5)

- Study variation of integrated pertrigger yields with trigger p_T
 - For associated0.5 < p_T < 4 GeV
- Evaluate difference between peripheral and central
 - difference ≈ same on near and away sides, and similar p_T dependence

Beware different vertical scales on top panels

ATLAS 2-particle correlations (6)

- Motivated by above observations subtract peripheral Y(Δφ) from central Y(Δφ)
 - -With associated $0.5 < p_T < 4 \text{ GeV}$
 - In different trigger p_T bins
 - ⇒Observe an approximately symmetric modulation in all bins

ATLAS 2-particle correlations (7)

•Central correlation function before and after subtraction of peripheral per-trigger yields, and converting back to $C(\Delta\phi,\Delta\eta)$

⇒Long-range modulation

ATLAS 2-particle correlations (7)

• Subtracted correlation functions for 2 other centrality bins.

Fourier decomposition

- Extract leading and second Fourier coefficients from per-trigger yields
 - $a_0 = \langle Y(\Delta\phi) \rangle \ a_2 = \langle Y(\Delta\phi) \cos(2\Delta\phi) \rangle$
 - -Convert to relative modulation of subtracted correlation function: $C_{sub} = A \left(1 + 2c_2 \cos 2\Delta \phi\right)$
 - ⇒ maximum ~ 1% modulation of the 2-particle correlation in central events

Fourier decomposition (2)

- If we assume that the amplitude of the 2-particle modulation factorizes:
 - $-c_2(p_T^a, p_T^b) = s_2(p_T^a) s_2(p_T^b)$
 - can calculate the single-particle modulation
 ⇒See s₂ values up to 0.14
- Then, if the modulation were due to flow
 - ⇒ v₂ values as large as 0.14

Test factorization

- If factorization holds, should obtain same s2 values for different associated p_T
 - ⇒true for p_T < 1 GeV
 - ⇒start to see deviations at higher p_T

2013 p-A Run projected performance

Baseline performance extrapolated from Pilot Fill

f0 → 11245.5 Hertz
σpPb → 2. Barn
γp → 4263.16
γPb → 1693.45
β alice $\rightarrow 0.8 \text{Meter}$
β atlas $\rightarrow 0.8 \text{Meter}$
β lhcb → 2. Meter
NPb → 1.2×10 ⁸
$Np \rightarrow 1.5 \times 10^{10}$
kb → 318
kc15 → 276
kc2 → 276
kc8 → 42
Nexp → 3
EmittPbx $\rightarrow 1.4 \times 10^{-6}$ Meter
EmittPby → 1. × 10 ⁻⁶ Meter
Emittpx $\rightarrow 1.7 \times 10^{-6}$ Meter
Emittpy → 1.7×10 ⁻⁶ Meter

	ATLAS	ALICE	CMS	LHCb
$N_{ m Pb}$	1.2×10^{8}			
N_p	1.5×10^{10}			
N_p eta^*	0.8	0.8	0.8	2.
$\rm L/cm^{-2}s^{-1}$	1.01×10^{29}	1.01×10^{29}	1.01×10^{29}	6.14×10^{27}
μ	0.065	0.065	0.065	0.026

Already close to ALICE maximum luminosity with emittances of pilot fill, good Pb intensity, fairly conservative proton intensity – leaves room to try to increase it up to a factor ~3 (level ALICE if necessary).

Can easily be worse if we have blow-up or losses at injection or ramp (from moving encounters, IBS, ...).

Unequal beam sizes were OK in pilot fill with higher β^* . Emittance increase will probably reduce luminosity for all experiments and pile-up for ALICE.

This is our preferred first goal for the run. But, on the basis of present knowledge, it is by no means a "safe set of parameters" (except for optics).

2013 p-A Run projected performance

	ATLAS	ALICE	CMS	LHCb
$N_{ m Pb}$	1.2×10^{8}			
N_p	1.5×10^{10}			
β^*	0.8	0.8	0.8	2.
$L/cm^{-2}s^{-1}$	1.01×10^{29}	1.01×10^{29}	1.01×10^{29}	6.14×10^{27}
μ	0.065	0.065	0.065	0.026

- ATLAS is preparing for maximum instantaneous luminosities up to 3x10²⁹.
- ATLAS goals for 2013 run
 - 25-30 nb⁻¹ of 5.02 TeV p+Pb
 - 5 pb⁻¹ of 2.76 TeV p+p
- We will not have 5.02 TeV (or comparable)
 p+p data until 2015 or after.

ATLAS physics goals for 2013 run

- Extend/complete basic measurements already underway with pilot run data
 - -e.g. charged particle multiplicity, spectra
- Elucidate physics responsible for the "symmetric ridges"
 - ⇒And look for other consequences of that physics in central p+Pb collisions
- Measure (indirectly) nuclear PDFs
 - -Using jets, dijets, γ-jet, W, Z
- Study semi-hard processes @ low x
- Understand the role of diffraction
 - Both as "background" and as intrinsically interesting and important physics

Nuclear PDFs: EPS09 and EPS09s

- •We must improve our poor knowledge re: nuclear PDFs and their b dependence
 - ⇒Impact parameter dependence especially important for improving precision on theoretical calculations for Pb+Pb

photon and Z yields: illustration

- Integrated luminosity from 2013 p+Pb run should be equivalent to 2011 Pb+Pb run
 - Examples shown of resulting γ and Z spectra

Kinematic reach of LHC p+Pb

From Salgado et al, J.Phys. G39 (2012) 015010

ATLAS ~ CMS

Fig. 9: Total kinematical reach of p+Pb collisions at \sqrt{s} =8.8 TeV at the LHC. Also shown is the reach with an integrated luminosity of 0.1 pb⁻¹ for some of the particular probes studied in the present document for ALICE and CMS, respectively.

- p+Pb measurements @ LHC will extend the range of nuclear PDF measurements.
 - for b dependence need centrality dependent measurements with good control over geometry
 - ⇒But, precision will be limited without 5.x TeV p-p

Semi-hard physics @ low x

Kutak and Sapeta arXiv:1205.5035

- Wide range of possible measurements.
 - One example shown here: forward-central dijets
 - ⇒prediction for visible effects of saturation
 - Kinematic range accessible in ATLAS (e.g.)
 - ⇒measurement doable w/ 2013 data

Summary, thoughts

- •6 hour p+Pb pilot run in Sep. 2012 was successful both for machine & physics
 - -first results on multiplicity, spectra, ridge++
 - -for me, the ridge++ was a surprise
 - ⇒ new territory in p+A physics
 - ⇒ obviously relevant for RHIC p+A plans
 - ⇒ s vs multiplicity dependence very important
 - beware neglect of diffraction
- In 1 week, start of high-luminosity run
 - Expected integrated luminosity: 30 nb⁻¹
 - ⇒Sufficient to address most of the goals of the LHC p+A program
 - But no 5.x TeV p-p until 2015 or after

Backup

Centrality dependence of c2 and s2

- •Perform c₂ and s₂ measurement in different ΣE_T bins
 - -similar variation of both c₂ and s₂ with p_T in all ΣE_T bins
 - -weak dependence of s₂ on centrality

Per-trigger yield systematics

Check for (rel.) charge dependence

- Perform two-particle correlation analysis for like and unlike-sign pairs
 - global correlation should not be sign dependent
 - but jet, resonance, other correlations may be
 - ⇒Observe identical behavior for like, unlike sign correlations in the data.

Sign dependence of c2 and s2

- Further check on like vs unlike sign correlations.
 - ⇒Identical results for c₂ and s₂ for like and unlike sign pairs