p+Pb at LHC: pilot run results and prospects for 2013 run from an ATLAS perspective Brian A. Cole, Columbia University January 7, 2013 #### p+Pb pilot run - LHC was operated with: - -4 TeV proton beam colliding with - -1.57 TeV/nucleon lead (Pb) beam - ⇒Center of mass energy 5.02 TeV/nucleon - \Rightarrow Center of mass rapidity shift $\Delta y = -0.47$ - 5 hour run w/ integrated lumi of ~ 1 μb⁻¹ - ⇒2 million events (in ATLAS). From R. Alemany *et al*, CERN-ATS-Note-2012-094 MD http://cds.cern.ch/record/1496101 #### **ATLAS Acceptance** #### p+Pb transverse energy measurement #### ΣE_T: Compare p+Pb and Pb+Pb - In p+Pb, see "global" correlations in centrality observables similar to Pb+Pb. - Over scale that differs by factor of ~ 20. - -But, much larger fluctuations in p+Pb. - ⇒No surprise. #### Pb-going ΣE_T (4.9 < η < 3.1) •For physics, we have concluded that Pb-going ΣΕ_T is useful centrality observable $-p_T > 0.4 \text{ GeV}$ $-|\eta| < 2.5$ #### p+Pb inclusive dNch/dn - 1st look at charge particle multiplicity: - arXiv:1210.3615: ALICE inclusive, NSD - ⇒dN_{ch}/dη/N_{part} 16% lower than in (est.) p-p - note: in ATLAS, similar trigger has nonnegligible SD contribution #### p+Pb inclusive spectra - 1st look at charged particle spectra - arXiv:1210.4520, ALICE inclusive, NSD - ⇒R_{pPb} consistent with 1, no suppression at midrapidity, also little or no "Cronin" #### Multiplicity and spectra - Clearly, next step is to study multiplicity and spectra as a function of centrality. - And to measure spectra over larger range of pseudo-rapidities. - Why no results so far? - -speaking for ATLAS only, ∃ a significant diffractive contribution to minimum-bias p+Pb cross-section that has complicated the "usual" analysis previously applied @ RHIC & LHC - ⇒e.g. application of usual naive Glauber model analysis fails for diffractive excitation of the proton and at large impact parameter - ⇒Likely that same problem exists @ RHIC #### **CMS 2-particle correlations** - 1st observation of ridge in p+Pb collisions. - in 2-charged particle correlations - Growth in yield with multiplicity - ⇒Much larger than in p-p - rapid variation with p_T - ⇒due to common p_T bins for both particles #### **ALICE: 2-particle correlations** - ALICE measurement of 2-charged particle correlations in 60-100% and 0-20% bins - based on V0 detector multiplicity - ⇒see additional near-side correlation in more central events over |Δη| < 1.8 ### **ALICE: 2-particle correlations** - •ALICE: consider difference between central and peripheral vs $\Delta\eta$ and $\Delta\phi$ - with fits to $a_0 + a_2 \cos{(2\Delta\phi)}$ - -and $a_0 + a_2 \cos{(2\Delta\phi)} + a_3 \cos{(3\Delta\phi)}$ #### **ALICE: 2-particle correlations** - Convert the a₂ and a₃ to analog of single particle flow coefficients v₂ and v₃ - assumes factorization (below) - ⇒significant v₂ and v₃ values #### **ATLAS 2-particle correlations** "peripheral" "central" - •charged particles, $|\eta| < 2.5$, $0.5 < p_T < 4$ GeV - -see "usual" correlations in peripheral - -see ridge + away-side broadening in central ## ATLAS 2-particle correlations (2) "peripheral" "central" - •To better see Δη dependence, project ZYAM-subtracted correlation function. - -For near ($\Delta \phi < \pi/3$) and away ($\Delta \phi > 2\pi/3$) sides. - ⇒In central collisions see ridge and broadening of away-side component relative to peripheral collisions. #### ATLAS 2-particle correlations (3) - Per trigger yields Y(Δφ) integrated over η - -peripheral and central - ⇒"Ridge" clearly present in central - ⇒Similar increase in the away side yield between peripheral, and central collisions #### ATLAS 2-particle correlations (4) - Evaluate integrated per-trigger yields, Y_{int} , near ($\Delta \phi < \pi/3$) and away ($\Delta \phi > 2\pi/3$) - -Yield grows with increasing ΣE_T similarly on near and away sides - Difference between away and near yields≈ constant - ⇒ constant "recoil": dijet + p cons. + lowp_T resonances #### Why E_T not N_{ch} for "centrality"? - There is an auto-correlation between N_{ch} and the number of particles & pairs - ⇒Distorts the per-trigger yields from the "recoil" contribution at low N_{ch} - ⇒Why the different behavior of away-near difference at large N_{ch} / ΣE_T? #### ATLAS 2-particle correlations (5) - Study variation of integrated pertrigger yields with trigger p_T - For associated0.5 < p_T < 4 GeV - Evaluate difference between peripheral and central - difference ≈ same on near and away sides, and similar p_T dependence Beware different vertical scales on top panels #### ATLAS 2-particle correlations (6) - Motivated by above observations subtract peripheral Y(Δφ) from central Y(Δφ) - -With associated $0.5 < p_T < 4 \text{ GeV}$ - In different trigger p_T bins - ⇒Observe an approximately symmetric modulation in all bins #### ATLAS 2-particle correlations (7) •Central correlation function before and after subtraction of peripheral per-trigger yields, and converting back to $C(\Delta\phi,\Delta\eta)$ ⇒Long-range modulation #### ATLAS 2-particle correlations (7) • Subtracted correlation functions for 2 other centrality bins. #### Fourier decomposition - Extract leading and second Fourier coefficients from per-trigger yields - $a_0 = \langle Y(\Delta\phi) \rangle \ a_2 = \langle Y(\Delta\phi) \cos(2\Delta\phi) \rangle$ - -Convert to relative modulation of subtracted correlation function: $C_{sub} = A \left(1 + 2c_2 \cos 2\Delta \phi\right)$ - ⇒ maximum ~ 1% modulation of the 2-particle correlation in central events #### Fourier decomposition (2) - If we assume that the amplitude of the 2-particle modulation factorizes: - $-c_2(p_T^a, p_T^b) = s_2(p_T^a) s_2(p_T^b)$ - can calculate the single-particle modulation ⇒See s₂ values up to 0.14 - Then, if the modulation were due to flow - ⇒ v₂ values as large as 0.14 #### Test factorization - If factorization holds, should obtain same s2 values for different associated p_T - ⇒true for p_T < 1 GeV - ⇒start to see deviations at higher p_T ## 2013 p-A Run projected performance #### Baseline performance extrapolated from Pilot Fill | f0 → 11245.5 Hertz | |---| | σpPb → 2. Barn | | γp → 4263.16 | | γPb → 1693.45 | | β alice $\rightarrow 0.8 \text{Meter}$ | | β atlas $\rightarrow 0.8 \text{Meter}$ | | β lhcb → 2. Meter | | NPb → 1.2×10 ⁸ | | $Np \rightarrow 1.5 \times 10^{10}$ | | kb → 318 | | kc15 → 276 | | kc2 → 276 | | kc8 → 42 | | Nexp → 3 | | EmittPbx $\rightarrow 1.4 \times 10^{-6}$ Meter | | EmittPby → 1. × 10 ⁻⁶ Meter | | Emittpx $\rightarrow 1.7 \times 10^{-6}$ Meter | | Emittpy → 1.7×10 ⁻⁶ Meter | | | ATLAS | ALICE | CMS | LHCb | |-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | $N_{ m Pb}$ | 1.2×10^{8} | | | | | N_p | 1.5×10^{10} | | | | | N_p eta^* | 0.8 | 0.8 | 0.8 | 2. | | $\rm L/cm^{-2}s^{-1}$ | 1.01×10^{29} | 1.01×10^{29} | 1.01×10^{29} | 6.14×10^{27} | | μ | 0.065 | 0.065 | 0.065 | 0.026 | Already close to ALICE maximum luminosity with emittances of pilot fill, good Pb intensity, fairly conservative proton intensity – leaves room to try to increase it up to a factor ~3 (level ALICE if necessary). Can easily be worse if we have blow-up or losses at injection or ramp (from moving encounters, IBS, ...). Unequal beam sizes were OK in pilot fill with higher β^* . Emittance increase will probably reduce luminosity for all experiments and pile-up for ALICE. This is our preferred first goal for the run. But, on the basis of present knowledge, it is by no means a "safe set of parameters" (except for optics). ### 2013 p-A Run projected performance | | ATLAS | ALICE | CMS | LHCb | |-------------------|-----------------------|-----------------------|-----------------------|-----------------------| | $N_{ m Pb}$ | 1.2×10^{8} | | | | | N_p | 1.5×10^{10} | | | | | β^* | 0.8 | 0.8 | 0.8 | 2. | | $L/cm^{-2}s^{-1}$ | 1.01×10^{29} | 1.01×10^{29} | 1.01×10^{29} | 6.14×10^{27} | | μ | 0.065 | 0.065 | 0.065 | 0.026 | - ATLAS is preparing for maximum instantaneous luminosities up to 3x10²⁹. - ATLAS goals for 2013 run - 25-30 nb⁻¹ of 5.02 TeV p+Pb - 5 pb⁻¹ of 2.76 TeV p+p - We will not have 5.02 TeV (or comparable) p+p data until 2015 or after. #### ATLAS physics goals for 2013 run - Extend/complete basic measurements already underway with pilot run data - -e.g. charged particle multiplicity, spectra - Elucidate physics responsible for the "symmetric ridges" - ⇒And look for other consequences of that physics in central p+Pb collisions - Measure (indirectly) nuclear PDFs - -Using jets, dijets, γ-jet, W, Z - Study semi-hard processes @ low x - Understand the role of diffraction - Both as "background" and as intrinsically interesting and important physics #### **Nuclear PDFs: EPS09 and EPS09s** - •We must improve our poor knowledge re: nuclear PDFs and their b dependence - ⇒Impact parameter dependence especially important for improving precision on theoretical calculations for Pb+Pb #### photon and Z yields: illustration - Integrated luminosity from 2013 p+Pb run should be equivalent to 2011 Pb+Pb run - Examples shown of resulting γ and Z spectra #### Kinematic reach of LHC p+Pb From Salgado et al, J.Phys. G39 (2012) 015010 ATLAS ~ CMS Fig. 9: Total kinematical reach of p+Pb collisions at \sqrt{s} =8.8 TeV at the LHC. Also shown is the reach with an integrated luminosity of 0.1 pb⁻¹ for some of the particular probes studied in the present document for ALICE and CMS, respectively. - p+Pb measurements @ LHC will extend the range of nuclear PDF measurements. - for b dependence need centrality dependent measurements with good control over geometry - ⇒But, precision will be limited without 5.x TeV p-p #### Semi-hard physics @ low x #### Kutak and Sapeta arXiv:1205.5035 - Wide range of possible measurements. - One example shown here: forward-central dijets - ⇒prediction for visible effects of saturation - Kinematic range accessible in ATLAS (e.g.) - ⇒measurement doable w/ 2013 data #### **Summary, thoughts** - •6 hour p+Pb pilot run in Sep. 2012 was successful both for machine & physics - -first results on multiplicity, spectra, ridge++ - -for me, the ridge++ was a surprise - ⇒ new territory in p+A physics - ⇒ obviously relevant for RHIC p+A plans - ⇒ s vs multiplicity dependence very important - beware neglect of diffraction - In 1 week, start of high-luminosity run - Expected integrated luminosity: 30 nb⁻¹ - ⇒Sufficient to address most of the goals of the LHC p+A program - But no 5.x TeV p-p until 2015 or after # Backup #### Centrality dependence of c2 and s2 - •Perform c₂ and s₂ measurement in different ΣE_T bins - -similar variation of both c₂ and s₂ with p_T in all ΣE_T bins - -weak dependence of s₂ on centrality #### Per-trigger yield systematics #### Check for (rel.) charge dependence - Perform two-particle correlation analysis for like and unlike-sign pairs - global correlation should not be sign dependent - but jet, resonance, other correlations may be - ⇒Observe identical behavior for like, unlike sign correlations in the data. #### Sign dependence of c2 and s2 - Further check on like vs unlike sign correlations. - ⇒Identical results for c₂ and s₂ for like and unlike sign pairs