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“The
particularly at distance scales small compared to
the radius of the constituent nucleons,

(Nuclear Science: A Long Range Plan, The
DOE/NSF Nuclear Science Advisory
Committee, Feb. 1996 [1].)
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The N-N Interaction and the Shell Model

The N-N interaction is attractive at a typical distance of 2 fm,
but highly repulsive at distances < (0.5 fm.

A
repulsive

V(r)

N

attractive

The attractive part of this interaction between all of the pairs of
nucleons in a nucleus, in combination with the Pauli principle,
produces a mean field in which the neutrons and protons move
like independent particles in well-defined quantum states.

Maria Mayer and J.H.D. Jensen received the Nobel Prize in
1963 for developing the shell model.
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Simple, schematic, shell-model picture of 1O (8n,8p)
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One of the best ways to study the shell model
is with “knockout” reactions (also called “quasi-elastic scattering”)..

Let’s consider a “(p,2p)” reaction. @
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One of the best ways to study the shell model
is with “knockout” reactions (also called “quasi-elastic scattering”)..

Let’s consider a “(p,2p)” reaction. ()

From 17;, p_l), and p_;we can @
deduce, event-by-event, what

- .

Drand the separation energy of

each knocked-out proton is.
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16Q(p,2p) at 460 MeV from the Enrico Fermi Institute
University of Chicago: Nucl. Phys. 79, 321 (1966).
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Simple, schematic, shell-model picture of 1O (8n,8p)
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During the ‘80s and ‘90s the premier tool for
knockout-reaction spectroscopy became the
“(e,e'p)” reaction.

_)
¢ Do
@
This was the result of two factors: @

1) Improvements in electron accelerators.

2) The ability to do “exact” reaction calculations
because the e-p interaction is electromagnetic.



1988: NIKHEF

AT BTSN T R SN N N R T T e

312°6S.

] 12C(e,e'p) i
el | -
g APy =29 MeV/c 2

] 142, 2125MeV | r
T 31275020MeV | | | -
12 . 151/2 knockout -
3 ¥2,6792MeV :

: (v I‘Lgszmv .

—_

- S(EwPp) [(MeV/c)? MeV-]

alt
.8,
i1 lntn]ﬂ

! L vveTy

E, [MeV]
G van der Steenhoven et al., Nucl. Phys A484, 445 (1988)
PA@RHIC Workshop January 2013 10




Something 1s

Spectroscopic
factors =l
for (e,e’p) -
reactions
show only 0.6
60-70%
of the o
expected '
single-particle o
strength. 00

MISSING!

Mean Field Theory

VALENCE PROTONS

B L 1 L L LA 1 A l
10' 10°
L. Lapikas, Nucl. Phys. A553,297¢ (1993)

There must be more!
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- . Benhar et al., 1986
The N-N Interaction and Correl -} 12[;

The N-N interaction is attractive at a typical ¢
but highly repulsive at distances < 0.5 fm.
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The short-range repulsion leads to phenomena such as the saturation
of central nuclear densities. But it also must manifest itself in the
wave functions of the nucleons in the nucleus. Because it is short
range, high-momentum components should be affected. Typically we
might expect N-N interactions at short range to produce pairs of
nucleons with large, roughly equal, and opposite momenta.
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Instead of considering a single proton in a nucleus, let’s
consider a short-range correlated neutron-proton pair.

Let’s start with a (p,2p) reaction.




Instead of considering a single proton in a nucleus, let’s
consider a short-range correlated neutron-proton pair.

Let’s start with a (p,2p) reaction. @

From 17;, P, and p, we can @
deduce, event-by-event what

1_)}and the binding energy of

each knocked-out proton is.



Instead of considering a single proton in a nucleus, let’s
consider a short-range correlated neutron-proton pair.

Let’s start with a (p,2p) reaction. @

From p,, p,, and p, we can We can @
deduce, event-by-event what then compare
1_)}and the binding energy of p, with f))f and see

each knocked-out proton is. if they are roughly “back to back.”
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Nuclear Fermi Momenta from Quasielastic Electron Scattering

E. J. Moriz
Institute of Theovetical Phusics, Depariment of Paysics, Stamford University,* Stanford, Californic 94305
and
I. SickT and R. R. Whitney
High Energy Physics Laboratory ard Department of Physics, Sterjord Universityy Stanford, Califvrnic 94305

and
J. R. Ficenec, R. D. Kephart, and W. P, Trower

Physics Department, Virginia Polytechnic Fnstitute and State University,$ Blacksburg, Virginia 24061
(Recelved 12 January 1971)
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For energies of several GeV and up,
For p-p elastic scattering near 90° c.m.,

do

e —(n1+no+nz+ng—2)
dt

il S

~ 10

where the Mandelstam variable s = (P, + Pr)? is the
square of the total c.m. energy.

So for quasi-elastic p-p scattering near 90° c.m., we
have a very strong preference for reacting with nuclear
protons with their Fermi motion in the beam direction.

Forward going,
®—‘ @"’ high-momentum
protons are
preferentially
selected, because

Target this minimizes s.
Nucleus
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Figure 1: A schematic side view of the EVA spectrometer.
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Full Correlations:

We then construct the directional correlation
between py and p, as

cosy = ﬁf i ﬁn
| D || P |
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Figure 21: Plots of cosvy, where ~ is the angle between pn
and py. Panel (a) is for events with p, > 0.22 GeV/c, and

panel (b) is for events with p, < 0.22 GeV/c; 0.22 GeV /c =
kr, the Fermi momentum for LB
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Figure 22:

line at 0.22 GeV /c corresponds to kg, the Fermi momentum for

12 C.
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So why did this work so well
when our count rate was only
> DX 1 per week ?

The s'' dependence of p-p elastic scattering, which
preferentially selects high momentum nuclear protons.

The improved resolution from using light cone variables.

The small deBroglie wavelength of the incident protons:
A =h/p= hc/pc=2m e 0.197 GeV-fm/(6 Gev)

~ (0.2 fm.

This meant that our probe could interact with a
single member of a correlated pair!
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The Relative and c.m. Motion of Correlated n-p
Pairs:
Qap + an
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Figure 23: Plots of (a) pS™ and (b) pl® for correlated n-
p pairs in '2C, for '2C(p,2p+n) events. Each event has been
“s-weighted”.
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The Correlated Fraction of (p.2p) Events:
P,<l

For the 6 GeV 1998 data set we estimated the
fraction of (p,2p) events with py > 0.22 GeV/c,

which have a correlated backwards neutrons with
Pa > 0.22 GeV fe.

[ corrected # of (p,2p+n) events A

o # of (p,2p) events B
The quantity A was obtained from the sample
of all 18 (p,2p+n) events with p,, > krp = 0.22

GeV /c, where a correction for flux attenuation and

detection efficiency was applied event-by-event,
and then corrected for the solid-angle coverage:

2 11
A=-—3"—.= =1090.

& t;
The average value of (1/e;t;) was 8.2+0.82 and
2w /A2 = 7.42. We can then calculate

A 1090
F=—=——=0.49+0.13.
B 2205 Soesllls
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Subsequent Development

“Evidence for the Strong Dominance

of Proton-Neutron Correlations in Nuclei”
by
E. Piasetzky, M Sargsian, L. Frankfurt, M Strikman
and J. W. Watson
Phys. Rev. Lett., 20 October 2006

“sFurther Analysis of the EVA Data

¢ Assumes 100% SRC above 275 MeV/c

¢ Includes the motion of the pair

“*Includes absorption of entering and
exiting nucleons in the nuclear medium

Conclusion: 92 * 18% of high-momentum protons
have correlated neutrons.
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A. A.Tang et al.,
Phys. Rev. Lett. 90, 042301 (2003)
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Electron Scattering at Fixed Q?
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CLAS A(e,e’) Data

K. Sh. Egiyan ef al., Phys. Rev. C 68 (2003) 014313.
Originally done with SLAC data by D.B. Day et al., Phys. Rev. Lett. 59 (1987) 427.
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Estimate of 12C Two and Three Nucleon SRC

K. Sh. Egiyan et al., Phys. Rev. Lett. 96 (2006) 082501.

. -
. K. Egiyan et al. related the @ ° b-bh +
known correlations in g2 vetooe?
. . < i [
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"b 0000000 +
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EO01-105: A customized (e,e’'pN) Measurement

To study nucleon pairs at close proximity and their contributions
to the large momentum tail of nucleons in nuclei. O

G >
— e Scattered
Incident ; electron

electron

A pair with “large” relative
momentum between the nucleons
and small center of mass momentum

Knocked-out
proton

Correlated partner
proton or neutron

* high Q2 to minimize MEC
« x>1 to suppress isobar contributions
« anti-parallel kinematics to suppress FSI
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New Equipment for the Experimental Setup

f\gullull— ‘: P 2y 8

Detector | Q&\%\{} 4,( )0,-"'
ll - \,) /r /
f Q{v,;’( /
. RHRS /

e New Scattering Chamber
New BigBite Hadron Spectrometer (100 msr)
New Low Energy Neutron Detector

.



The neutron detector array
consisted of 88 bars of
plastic scintillator, with a

PMT on each end of each
bar, for “mean timing.”

These were gathered from
around the world.
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Kinematics

4.621 GeV/c

The BigBite A=

Spectrometer
and

Neutron Detector
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(e.e’'p) & (e,e’pp) Data
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MCEEP with pair
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Short-Range Correlation Pair Factions

R. Subedi et al., Science 320 (2008) 1476).

-t
Q
N

= Y

pp/np from [1ZC(e,e’pp) / 2C(t-z,e’pn) 1/2
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R

| | |
0.3 0.4 0.5 0.6

Missing Momentum [GeV/c]
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The Results from E01-015 can be found in:
1) R. Shneor, et al., Phys. Rev. Lett. 99, 072501 (2007).

2) R. Subedi, et al., SCIENCE 320, 1476 (2008).

The results of the BNL (p,2p+n) experiment are fully consistent with
the results of the JLab (e,e’p+N) experiment:

< Different Laboratories
><] Different probes

><] Different Graduate Students

<] Different millenia

Same Results!

><I We are observing nuclear structure
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Implications for Neutron Stars
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From the 2007 NSAC Long-Range Plan:

“. . .the direct observation of correlated two-nucleon
and three-nucleon effects in the nuclear medium has
been evasive. The powerful combination of the multi-
GeV electron beam and a large-acceptance detector at
JLAB has permitted the direct observation of two- and
three-nucleon correlations in nucler”
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Two New Directions

1.) Why is the np:pp ratio 20:1?
= => JLab Experiment E07-006 on He
2.) Is there a connection to the EMC effect?

= => JlLab Experiment E12-11-107

pPA@RHIC Workshop January 2013
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Importance of Tensor Correlations

il

Py (9.Q=0) (fm’)

q (fm™)
M. Sargsian et al., Phys. Rev. C (2005) 044615.

R. Schiavilla et al., Phys. Rev. Lett. 98 (2007) 132501. [shown above]

M. Alvioli, C. Ciofi degli Atti, and H. Morita, Phys. Rev. Lett. 100 (2008)
sl 62503,
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A new approved experiment at Jlab EO7-006

Measurement of the “He(e,e’pp) and “He(e,e’pn) reactions over the “He(e,e’p)
missing momentum range from 400 to 875 MeV/c. N

repulsive core

-

The expected (e,epp)/(e,enp) ratios for 4He

3 | B FE01-10512C (scaled to “He)
: y O This proposal - “He
10
f Density distributions:
i Sargsian et al.
’ Schiavilla et al.
107

(e,e’pN) calculations are needed
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The European Muon Collaboration (EMC) effect
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SLAC E139

211

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

Data from CERN SLAC JLab EMC collaboration, Aubert et al. PLB 123,275 (1983)
1983- 2009

SLAC Gomez et al., Phys Rev. D49,4348 (1994)

A review of data collected during first decade, Arneodo, Phys. Rep. 240,301(1994)



EMC is a not a bulk property of nuclear medium
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New Results from JLab Hall C (E02-019)

Q2=2.5GeV?2

Fa =1

Fomin et al.

Fomin et al.
[excluding the CM

motion mrrection]
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N. Fomin et al. Phys. Rev. Lett. 108:092502, 2012.
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Illustrated by Anna Shneor 2011



New |ldea: Large Acceptance Device

..........
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Summary of Results

Almost all nucleons above the Fermi sea
are part of 2N-SRCs.

These SRC pairs move inside the
nucleus with ¢.m. motion
of 0~140 MeV/c.

The 2N-SRC consists of —
n-p pairs (90%)

n-p pairs(5%)

n-n pairs(5%).

A new experiment on “He has been
completed at JLab—analysis is
underway.

An experiment to explore the
relationship between SRCs and
the EMC effect has been approved.

Single nucleons

M., Hnn
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Instead of considering a single proton in a nucleus, let’s
consider a short-range correlated neutron-proton pair.

Let’s start with a (p,2p) reaction. @

From 17;, P, and p, we can @
deduce, event-by-event what

1_)}and the binding energy of

each knocked-out proton is.



