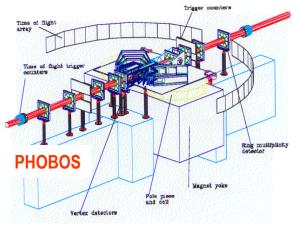
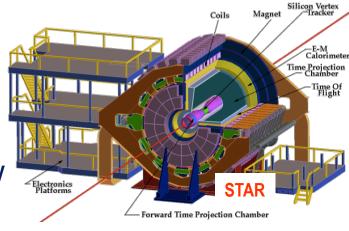

p-A Collisions at RHIC

T. Ludlam
January 7, 2013



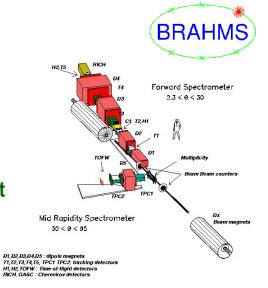


In the Beginning:

RHIC experiments configured to focus on hot nuclear matter in the central region

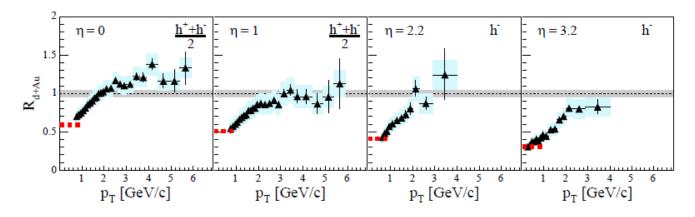
of cold matter in nuclei-interest primarily as a
"baseline"

Muon Tracking Chambers


Drift Chambers

Muon ID Steel

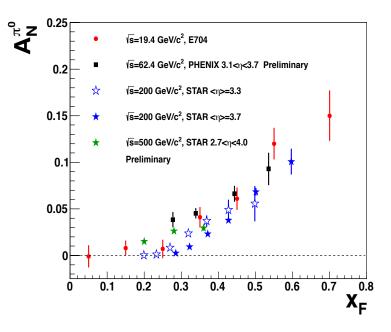
PHIENIX


Not much detector coverage in the forward direction.

Provision for asymmetric beams in the RHIC rings was designed in, but not as a forefront capability.

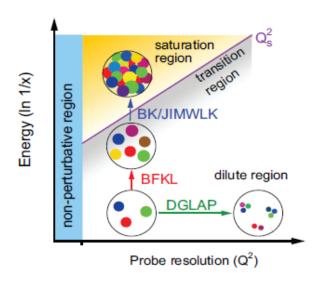
Early surprises with probes of Cold Nuclear Matter at RHIC

BRAHMS result from 2003 d + Au Run



Color Glass Condensate?

High Pt hadrons are suppressed at very forward angles in d-Au collisions: hint of initial-state gluon saturation .


Transverse Single Spin asymmetries are large at RHIC energies:

New experimental probe of color interactions; potential to distinguish initial and final state effects.

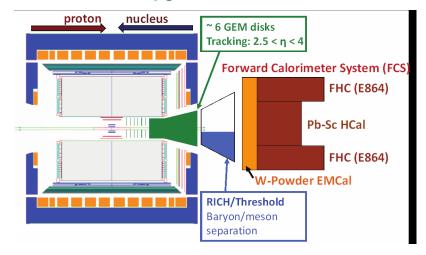
QCD at extreme parton densities

Attention has now turned to the fundamental importance of the saturated gluon state. p – A collisions provide a smaller, simpler probe.

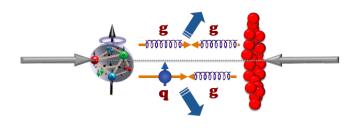
- Enhanced RHIC II luminosity
- p-A collisions at LHC
- Science goals for an Electron Ion Collider

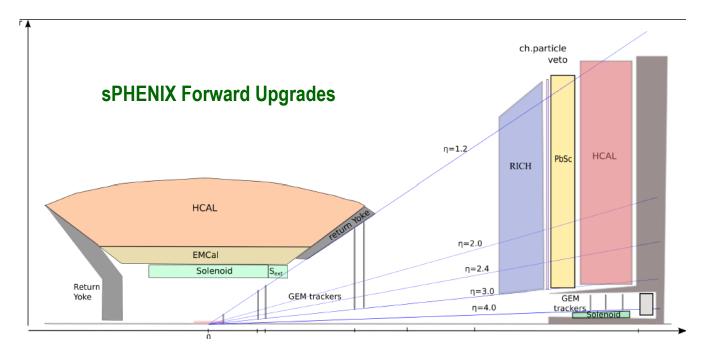
Renewed focus on forward kinematics at RHIC:

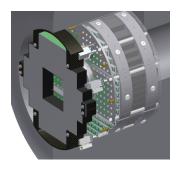
Scattering of high-x valence quark off low-x gluon.


New idea:

Scattering a polarized probe on saturated gluon matter. Transverse Single Spin asymmetry may provide a further experimental test of effective theory for gluon saturation, e.g. test CGC predictions.


Need forward upgrades to the detectors


STAR Forward Upgrades



Forward Upgrades

STAR and PHENIX

PHENIX MPC-EX

RHIC Timeline for the next Decade

From the White Paper "The Case for Continuing RHIC Operations"

Years	Beam Species and Energies	Science Goals	New Systems Commissioned
2013	 500 GeV p + p 15 GeV Au+Au 	 Sea antiquark and gluon polarization QCD critical point search 	Electron lensesupgraded pol'd sourceSTAR HFT
2014	 200 GeV Au+Au and baseline data via 200 GeV p+p (needed for new det. subsystems) 	 Heavy flavor flow, energy loss, thermalization, etc. quarkonium studies 	 56 MHz SRF full HFT STAR Muon Telescope Detector PHENIX Muon Piston Calorimeter Extension (MPC-EX)
2015- 2017	 High stat. Au+Au at 200 and ~40 GeV U+U/Cu+Au at 1-2 energies 200 GeV p+A 500 GeV p	 Extract η/s(T_{min}) + constrain initial quantum fluctuations further heavy flavor studies sphaleron tests @ μ_B≠0 gluon densities & saturation finish p+p W prod'n 	 Coherent Electron Cooling (CeC) test Low-energy electron cooling STAR inner TPC pad row upgrade
2018- 2021	 5-20 GeV Au+Au (E scan phase 2) long 200 GeV + 1-2 lower √s Au+Au w/ upgraded dets. baseline data @ 200 GeV and lower √s 500 GeV p + p 200 GeV p + A 	 x10 sens. increase to QCD critical point and deconfinement onset jet, di-jet, γ-jet quenching probes of E-loss mechanism color screening for different qq states transverse spin asyms. Drell-Yan & gluon saturation 	 sPHENIX forward physics upgrades