History of the ZDC

- ZDC commissioned during transverse running
 - 2 analyses see analyzing powers of ~7.5%
 - Relatively insensitive to different trigger conditions
- See drop in asymmetry with switch to longitudinal running

$$\epsilon_{phys} \ = \ \frac{\sqrt{N_L^\uparrow N_R^\downarrow} \ - \ \sqrt{N_L^\downarrow N_R^\uparrow}}{\sqrt{N_L^\uparrow N_R^\downarrow} \ + \ \sqrt{N_L^\downarrow N_R^\uparrow}}$$

From B. Surrow

250 GeV

Polarization direction at PHENIX Waldo MacKay 8 June, 2009

Shift of Pol in Yellow during Fill 10450

Residual transverse components are significantly changed during this fill.

CNI measurements were: 3/28 20:53 37.4±3.0 % 3/29 00:01 37.6±1.9 % 3/29 03:00 36.4±3.0 %

Vert Spin: $\frac{L-R}{L+R}$

Horiz Spin: $\frac{U-D}{U+D}$

From M. Tagawa

NATIONAL LABORATORY

- Fills 10372 and 10375 (no rotators) had CNIpols: $Y1 \sim 40\%$, $Y2 \sim 50\%$
 - average to 45% with $A_0 \sim 0.031$
- Fill 10450 (with rotators): $Y1 \sim 38\%$, $Y2 \sim 47\%$
 - average to 42.5%.
- For 10450 scale $A_0 \sim 0.031 \times \frac{42.5}{45} \sim 0.029$

$$\frac{\Delta A_x}{A_0} \sim \frac{-0.0002}{0.029} = -6.7 \text{ mr}$$

$$\frac{\Delta A_y}{A_0} \sim \frac{0.0004}{0.029} = -13.4 \text{ mr}$$

Best Hourly yellow orbits during fill 10450 ≥

& Orbit difference: 4 am minus 10 pm ≥

$$\Delta \theta_x = -17.7 \ \mu \text{r}$$

$$\Delta \theta_y = -18.1 \ \mu \text{r}$$

$$(1 + G\gamma)\Delta\theta_x = -8.5 \text{ mr}$$

$$(1 + G\gamma)\Delta\theta_y = -8.7 \text{ mr}$$

(naive estimate)

Polarization direction at PHENIX Waldo MacKay 8 June, 2009

Simulation of IR8 angle bumps 3

Left: no angle bumps at IP8; Right: V and H angle bumps at IP8.

§ Fill 10450 comparison §

	n_x	n_y
Sim. with bumps	-0.043256	-0.002936
Sim. without bumps	-0.023093	-0.005037
Sim. Δn_j	-0.020163	0.002101
Naive scaling Δn_j	-0.0085	-0.0087
PHENIX measurement	-0.0067	-0.0013

- Sim. with closed angle bumps: agreement not so good.
 - Overall magnitude of effect is in the ballpark.
 - Disagreement is probably due to the unclosed bumps.
- Automatic orbit correction was not working in fill 10450.
 - The horiz orb showed a two clear states, but vert drifted.

§ PHENIX Blue 100 GeV transverse §

- Rotators off.
- yellow:

$$\tan^{-1} \frac{0.0008}{0.1523} = 3.0^{\circ}$$

• blue:

$$\tan^{-1} \frac{0.0039}{0.0151} = 14.4^{\circ}$$

§ PHENIX Fill 10642 100 GeV B long ≥

Adjust rotators to remove vertical component of 10°.

§ Simulation of IP8; rotators off §

• Without IP8 rotators, initial spin set to have -10° radial component.

§ Simulation of IP8; rotators on §

• With IP8 rotators, 10° radial component rotators to -10° vertical.

& Summary &

- At 250 GeV, PHENIX measures changes in spin direction with IR steering.
- At 100 GeV, the blue ring spin is tilted away from the vertical by 10 to 14° without rotators. $(n_x \sim -0.175)$
 - Rotates to vertical with rotators set for longitudinal. $(n_y \sim -0.175)$
 - I haven't identified the source. (Too large for snake errors.)

