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The guestion

One statement one hears Is that hydro evolves a continuous fluid
(correct) and then uses the Cooper-frye formula to turn it into
massive particles

So, how then is the essentially fluid of essentially massless particles
(quarks and gluons to make a concrete picture — but hydro doesn’t
care — it could be water, or liquid helium..) turned into massive
particles (e.g. via chiral symmetry restoration) How is the kinetic
energy turned into momentum or mass. How can you conserve both
momentum and energy.

The misunderstanding | have had comes from the fact that | thought of
particles — gaining mass — In reality | think this is what happens
through a complicated set of interactions with the vacuum, as the
vacuum evolves. But this is not how hydro/Cooper Frye thinks about
It.

Cooper frye takes this continuous liquid and then breaks it into massive
particles — the number of particles formed depends on the mass.

This little note will not explain WHY Cooper Frye works, but simply how
It conserves energy



If we assume (wrong)

EQN_ dN g(E, T(V)) =

=) @ oam) P4V

where E and T are, respectively, the energy and
temperaturein the comoving or local rest frame, v isthe velocity

g(E, T)=g(2n) *lexp(E/kT) 1] fé’(E T)d*p

This comes from the assumption that the momentum
distribution in the CM frame is given by the probabillity of
finding a particle with a collective velocity v times the
Lorentz-boosted thermal distribution normalized to the
total number of particles

Seemingly a reasonable assumption



we get

dN
d3p =

* This eqn yields the correct number of particles but is
Inconsistent with energy conservation

— They prove this in the paper — they figure out the total energy of
the gas (fluid) and compare it to just adding up all of the
momentum assuming a relativistic gas of mass m under the
assumption that it is in local thermodynamic equilibrium which
will be shown on the next slide

— o, s the freezeout hypersurface

— This egn has some additional assumptions (that dN/d3v
entropy density) — but | think that is beside the point. One sees
the same problem of energy conservation

2 [ g(E, TG)Eu"do,,.



Correct (cooper frye)

for a relativistic gas, the invariant single particle distribution of the particles on a

hypersurface o is

now we take this distribution and assume that the gas is in local thermodynamic
equilibrium so the function fis

f(x; p)zg(E_(U(X)), T(X)) So we get

E4l = [, 9(E(v(z), T(z))p"do,

which is the same as before with one Eut replaced by p This correctly
conserves energy but does not necessarily conserve particle number and since

it is a 4 momentum, depends on the energy AND momentum, hence the mass.
See note on last page



How to use It

 Eu* replaced by p*

« How to use It
— so start with fluid (zero mass)
— let it expand
— Turn 1t into masses using C-F formula

— Number of particles changes depending on
mass



LrANSPOIT LNeory.
The Boltzmann equation is

p¥a, f(x, p)= AT(x, p), (11)

where AT is the rate of change in f due to colli-
sions. The stress-energy tensor defined by

T (x)= | p*p"f(x, pIDP (12)

is conserved by virtue of energy-momentum con-
servation in individual ecollisions,

a,,fﬁ"m:fp-“amp:n, (13)

The collective velocity 4-vector u*(x)
= (y(x), ¥(x)¥(x)) is defined by

n(ut(x)= [ p#7(x, p)Dp. (14)

The quantity »n(x)u*(x) is a number current density
and can be used to count the net number of parti-
cles on o,

[ ntewtido, = [ bp | ix,pip*ao, =N(o),

(15)
but there is no reason in general for it to be con-
served,

8 n(xh"(x))= f ATDp 0.

Now n(x) is a Lorentz scalar. Its meaning is
established by using the Lorentz transformation
to the comoving frame as a change of variables
in evaluating the integral in Eq. (14). The trans-
formation is

p¥=LY{(WP" = LIV E + LI (WP, (16)

where

Note on number conservation

from Cooper and Frye

LE@) =u¥,
L) = =62, +(1 = 84°)[68 = (y = D', /5],
and (17)

?_j LYLY =ubu’ —g"
=

The evaluation of Eq. (14) is
[ p#7(x, P =utx) [ 5(z, PraP
cLf [ 57(%, BIDP

=A(Dhu'(x),

where the second term vanishes because we are
assuming that f(%, B) is locally isotropic in the
comoving frame. Hence, n(x)=#(%), the particle
density in the local rest frame.

The stress tensor can also be evaluated under
the assumption of local isotropy:

19 ()= [ (But + LEFNE + LB (%, B2
- J [fu”u“ + (f—E) L}*Lﬂ (%, B)dp

=(e +phutu” - pgh", (18)
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