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Lecture 6
 Before we dive into QM, we want to learn some math associated with bra's ket's and operators. This is the mathematics of 
complex vector spaces - a particular kind of Hilbert space. The first thing we will need to remember is that these spaces 
are complex, so remember that a number or variable has 2 components now, a real piece and an imaginary piece i.e. a 
number c = Hc1 +  c2L where c1 and c2 are real. c* is the complex conjugate of c. c* c is written as c2 and is always real.So the 
numbers inside the kets and the eigenvalues are often complex.. (real eigenvalues are special since they will correspond to 
stuff we can see and touch called observables - like momentum, energy, position etc)

So first we start with the space that our kets live in - ket space (Juice-space in our previous example). We will however 
assume that we are in a continuous space so its more like the wavelength. 

Bra' s and Ket' s − the things that specify states

So lets list some rules. These are known, because mathematicians have been studying complex vector spaces for a long 
time. We physicists are borrowing the math. Its not so different than when we borrow arithmetic, algebra and geometry 
from the mathematicians. 

(1)†a\+†b\=†g\            kets can be added and you get another ket

(2)
c†a\=†a\c=†g\            you can multiply by a number (complex) and get another ket
Note that for we physicists, we normalize everything so †a\ and c†a\ describe the same state as long as c∫0
if c is zero, then †g\ is a null ket 

(3)
Observables such as momentum., energy etc, are represented by operators which act on kets from the 
left and give another ket
A
` †a\=†g\ 

(4)

In general A
` †a\ is not a constant times †a\. However there are special and very important kets, known as 

eigenkets of an operator A
`
 which we will denote as †a'\,  †a''\,  †a'''\,  †a''''\,...          with the property that

A
` †a'\=a'†a'\     A` †a''\==a''†a''\  etc so that †a'\,  †a''\,  †a'''\ are the eigenkets and {a',  a'', a''',...} are the 
eigenvalues

(5)

An arbitrary ket can be written as 
†a\ = Sca'†a'\  It will turn out that eigenkets of observables can be used as a basis and will span the space - 
but we will get to that later. I also note that if there is a continuous set of eigenkets then the sum turns into 
an integral. 

(6)So if A
`

 is an observable and †a'\ are the eigenkets then an arbitrary ket †a\ = Sca'†a'\ 
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(7)There exists a dual to †a\  which we denote as Xa §          We will say    †a\ õDC
 Xa §

(8)The dual to  c†a\ is c* Xa§       NOT cXa§  

(9)
The combination Xb†a\ is called an inner product or a braket "bra""ket" which is a c-number [A c-number 
is a number or a function like you have always known. It is NOT a ket or a bra. i.e. the inner product will 
"kill" the bra and ketness just like the dot product of two vectors makes a scalar.

(10)POSTULATE Xb †a\ = Xa †b\*

this of course means that Xa †a\ = Xa †a\* hence it is real

(11)POSTULATE Xa†a\ ¥0       that is, it is positive definite   and Xa†a\ =0 only if †a\=0

(12)†a\ and †b\ are orthogonal if Xa†b\=0

(13)we can normalize our ket †a\    by setting †anew\ = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#############Xa †a †a\     so that Xanew †anew\=1

OPERATORS − the things that specify obervables

(14)we will denote as general operators X
`
,  Y

`
, ...  and 

operators which are observables (Hermitian Operators) as A
`
,B

`
,...

(15)X
`

=Y
`

if X
`

 †a] = Y
` †a\ for any †a\

(16)if X
`

 †a] =0    X
`
 is a null operator

(17)Operators are associative and commutative under addition

(18)

The operators we will deal with in this class will be linear [Except the time reversal operator if we get to 
it]
This means
X
`
[c|a\+b†b\] = cX

` †a\ + bX
` †b\ 

(19)The dual conjugate of X
` †a\  is  Xa§X` †

(20) X
` †is called the hermitian adjoint of  X

`

(21)X
`

 is Hermitian if  X
` †

=X
`

a very important one

Observables are represented by Hermitian Operators

(22)In general X
`

 and Y
`
 do not commute under multiplication - that is 

X
`
Y
`
 ∫ Y

`
X
`

   another important one!

(23)the associative law is ok under multiplication i.e. 
X
`
(Y

`
Z
`
)=(X

`
Y
`
)Z

`
=X

`
Y
`
Z
`
       and X

`
(Y

` †a\L=(X
`
Y
` L†a\=X

`
Y
` †a\
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IX`  Y
` L† = Y

` † X
`

 † 
     proof
           first recall that  Y

` †a\ õDC
  Xa§Y` †

     Xa§(X
`

 Y
` M† õ

DC
  X

`
Y
` †a\ =X

`
(Y

` †a\)õ
DC

(Xa§Y` †)X
` †=Xa§Y` † X

` †   hence IX`  Y
` L† = Y

` † X
`

 † 

(25)We will define a new thing called an outer product which will act as a operator 
†b\Xa§               outer product

(26)
Note that †a\†b\ is illegal unless they are in different spaces - e.g. for an electron if   †a\ is the space part 
of the eigenfunction and   †b\ is the spin part. this may be confusing now, but I hope it will become clear 
to you.

(27)
(†b\Xa§) †g\ = †b\ (Xa†g\) Dirac's associative axiom of multiplication - An outer product acting on a ket is 
another ket 
    this is sort of like a rotation i.e. (†b\Xa§)   "rotates" †g\  into  †b\

(28)if X
`
=†b\Xa§    then  X

`
 †= †a\Xb§  

(29)
Proof: 
Xg§X`  † õ

DC
 X

`
 †g\ = †b\ Xa§ g \ õ

DC
 Xa †g\*Xb»=Xg†a\Xb»=Xg†(|a\Xb»)     hence  X

`
 †= †a\Xb§ 

(30)Xb†X` †a\= Ya … X
` †

 †b\*   CORRECTED EQN

(31)
Proof:      first recall Xb †a\ = Xa †b\* 
Xb†X` †a\= Xb† HX` †a\)=[   (Xa … X

` †L  †b\E *
 =Ya … X

` †
 †b\*

(32)So if X
`
 is Hermitian, i.e. X

`
=X

` †   then    Xb†X` †a\= Ya … X
`

 †b\*         CORRECTED EQN            

(33)

It turns out that observables will be represented by Hermitian Operators 
Theorem

The eigenvalues of Hermitian operator A
`

are real
The eigenkets of A

`
 are orthogonal

Proof::

A
` †a'\ªa'†a'\
Since A

`
 is Hermitian ( A

`
=A

` †) the DC of this eqn is

Xa”§A` =a "*Xa”§    hence   [here if you have a problem with Xa”§A` , think of it as the DC of   »g\= 
A
`

 †a '\]
Xa » A

` » a ']=a'Xa”†a'\   also

Xa » A
` » a ']=a *Xa”†a'\    subtract these two

0=(a'-a *LXa”†a'\        so one of the two terms here must be zero

Now if a'=a”  Then a'=a '*   and a' is real   [proof of first statement]

if a'∫a”  then Xa”†a'\ =0    

so summarizing  if a'=a   then Xa”†a'\=Xa'†a'\=some number - lets normalize it so that the number is 
1 and we get

Xa”†a'\ = da  a'    [proof of 2nd statement]
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this means that the eigenkets †a\ are a set of basis eigenkets.! (We will see later that they span the 
space)

(34)
So now we can write any arbitrary ket |a\   as  |a\ =⁄a ca †a\   Now if we want to find the ca ' s
Xa'§a\ =⁄a ca Xa ' †a\  ï      Xa'§a\ =⁄a ca daa' ï ca=Xa§a\  ï      |a\ =⁄a  †a\Xa§a\ 

(35)From here we get something which is called the completeness relation (note that this is not a proof- we 
used this to write (5)                                         1

`
 =⁄a  †a\Xa§

(36)
As before we see the normalization condition- we assume †a\ is normalized

1=Xa§a\=Xa§( ⁄a  †a\Xa§ )»a\= ⁄a » Xa§ a\ »2 =⁄a » ca »2

(37)

Now we can define something called a projection operator
We shall consider 
L
`

aª†a\Xa§ which behaves as an operator

L
`

a§a\ = †a\ Xa§ a\ = ca †a\  so it "projects out a pice of §a\ which is parallel to †a\    and the length is 
ca=Xa|a\

(38) 1
`
 =⁄a  †a\Xa§= ⁄aL

`
a
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