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Lecture 25
Orbital Angular Momentum
Now I would like to go to the subject of orbital angular momentum and we will see that it fits in nicely with the angular 
momentum we defined as J

`
 which will come in two types, orbital and spin. Specifically we will define  J

`
 =  L

`
 + S

`
.

OK lets start. The classical definition of angular momentum is  L”÷  =r” × p”÷ .  Now lets just make it QM  by making things 
operators

 L
`
 =r̀× p̀

 REMEMBER       [x̀i, x̀ j ]=0      [ p̀i , p̀ j ]=0      [x̀i, p̀ j D = iÑdij

 First lets check and see if it really is an type of angular momentum. If it is, it must satisfy [J
`

i , J
`

j]=iÑeijk J
`

k, i.e. 
[L

`
i , L

`
j]=iÑeijk L

`
k    Lets check it

 [L
`

x , L
`

y]=[ ỳ p̀z -z̀ p̀y , z̀ p̀x -x̀ p̀z ]=[ ỳ p̀z , z̀ p̀x ]-[ ỳ p̀z , x̀ p̀z ]-[z̀ p̀y , z̀ p̀x]+[z̀ p̀y ,x̀ p̀z ]=

[ ỳ p̀z , z̀ p̀x ]-[ ỳ , x̀ ] p̀z-z̀[ p̀y , p̀x]+[z̀ p̀y ,x̀ p̀z ]=[ ỳ p̀z , z̀ p̀x ]+[z̀ p̀y ,x̀ p̀z ]=

ỳ[ p̀z , z̀ p̀x ]+[ ỳ , z̀ p̀x ] p̀z+z̀[ p̀y ,x̀ p̀z ]+[z̀ ,x̀ p̀z ] p̀y= ỳ[ p̀z , z̀ p̀x ]+[z̀ ,x̀ p̀z ] p̀y=

ỳz̀[ p̀z , p̀x ]+ ỳ[ p̀z , z̀ ] p̀x+x̀[z̀ , p̀z ] p̀y+[z̀ ,x̀ ] p̀z p̀y= ỳ[ p̀z , z̀ ] p̀x+x̀[z̀ , p̀z ] p̀y=  -iÑ ỳ p̀x+iÑx̀ p̀y= 

iÑ(x̀ p̀y- ỳ p̀x)=iÑL
`

z   And you can do this for all the other combinations so good. It follows the required commutators. 

Next lets see if it is a generator of rotations. Lets look at the operator (1-i dfÅÅÅÅÅÅÅ
Ñ

L
`

z). We will operate on the position ket 

†x',y',z'\  . We can use the definition  
”÷÷÷̀
(dx)|x\=(1

`
-idx· P

`

ÄÄÄÄÄ
Ñ

)|x\=|x+dx\ 

(1-i dfÅÅÅÅÅÅÅ
Ñ

L
`

z)†x',y',z'\=[1-i dfÅÅÅÅÅÅÅ
Ñ

Hx̀ p̀y - ỳ p̀xL]†x',y',z'\=[1-i dfÅÅÅÅÅÅÅ
Ñ

x̀ p̀y + i dfÅÅÅÅÅÅÅ
Ñ

 ỳ p̀x]†x',y',z'\=[1-ix ' df
p̀yÅÅÅÅÅÅÅÅ
Ñ

+ iy ' df p̀xÅÅÅÅÅÅÅÅ
Ñ

]†x',y',z'\
=[1+iy ' df p̀xÅÅÅÅÅÅÅÅ

Ñ
-ix ' df

p̀yÅÅÅÅÅÅÅÅ
Ñ

]†x',y',z'\=†x'-y'df, y'+x'df, z'\ Which is just what you expect from a rotation.

So this operator L is a type of angular momentum J

Now we can think of a spinless particle †a\, or in position representation Xx',y',z'†a\
We can look at the rotated state (1-i dfÅÅÅÅÅÅÅ

Ñ
L
`

z)†a\ and the position representation 

Xx',y',z'†(1-i dfÅÅÅÅÅÅÅ
Ñ

L
`

z)†a\= Xx'+y'df, y'-x'df, z'†a\  
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(note: Yx ', y ', z ' °I1 - i dfÅÅÅÅÅÅÅ
Ñ

 L
`

zM †a\=Yx ', y ', z ' °I1 - i dfÅÅÅÅÅÅÅ
Ñ

 L
`

zM †a\††
= Ya … 1 + i dfÅÅÅÅÅÅÅ

Ñ
 L
`

z †x ', y ', z '\†=Xa†x'+y'df, y'-x'df, 
z '\†=Xx'+y'df, y'-x'df, z'†a\)
Now its easier to put this in spherical coordinates    Xx', y', z'†a\  Ø  Xr, q, f†a\
x'=rsinqcosf  y'=rsinqsinf   z'=rcosq    r=è!!!!!!!!!!!!!!!!!!!!!!!!!!!!x '2 + y '2 + z '2    q= acosI z'ÅÅÅÅÅ

r
M= acosi

k
jjj z'ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"###########################x'2+y'2+z'2

y
{
zzz    f = atanI y'ÅÅÅÅÅ

x'
M

Xr, q, f†(1-i dfÅÅÅÅÅÅÅ
Ñ

L
`

z)†a\= Xr, q, f-df†a\ =Xr, q, f †a\ - df dÅÅÅÅÅÅÅ
df

Xr, q, f†a\  so can identify

Xx†(L` z)†a\= Xx†a\ = ÑÅÅÅÅ
i

 dÅÅÅÅÅÅÅ
df

Xx†a\  

Note that x is a vector so xØ x',y',z'  or xör ,q, f

similarly we can find (and after some work converting to spherical coordinates)

L
`

z=x̀ p̀y - ỳ p̀x  L
`

x= ỳ p̀z - z̀ p̀y  L
`

y=z̀ p̀x - ỳ p̀x

Xx',y',z'†L` z†a\=Xx'+y'df, y'-x'df, z'†a\  = ÑÅÅÅÅ
i

 dÅÅÅÅÅÅÅ
df

Xx†a\    you can do this one in the usual way converting from x,y,z to r,q, f

Xx',y',z'†L` x†a\= Xx', y'+z'df, z'-y'df†a\ = ÑÅÅÅÅ
i

 I-sinf dÅÅÅÅÅÅÅ
dq

- cotqcosf dÅÅÅÅÅÅÅ
df

MXx†a\ 

Xx',y',z'†L` y†a\= Xx'-z'df, y', z'+x'df†a\ = ÑÅÅÅÅ
i

(-cosf dÅÅÅÅÅÅÅ
dq

- cotqsinf dÅÅÅÅÅÅÅ
df

)Xx†a\ 

Then we can figure out the raising and lowering operators 

L
`

≤ = L
`

x ≤ i L
`

y = ÑÅÅÅÅ
i

 e≤if(≤ i dÅÅÅÅÅÅÅ
dq

- cotq dÅÅÅÅÅÅÅ
df

)Xx†a\   and   

 L2 = Lz
2 + 1ÅÅÅÅ

2
 HL+ L- + L- L+L

Yx °L` 2 » a] = -Ñ2A 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sin2  q

 d2
ÅÅÅÅÅÅÅÅÅÅ
df2 + 1ÅÅÅÅÅÅÅÅÅÅ

sinq
 dÅÅÅÅÅÅÅ

dq
 Isinq dÅÅÅÅÅÅÅ

dq
ME Xx †a\  

Note that this is the angular part of laplacian in spherical coordinates apart from 1ÅÅÅÅÅÅÅ
r2  You can derive the Laplacian in 

spherical coordinates: õ”÷÷ 2 = I d2
ÅÅÅÅÅÅÅÅÅÅ
dx2 + d2

ÅÅÅÅÅÅÅÅÅÅ
dy2 + d2

ÅÅÅÅÅÅÅÅÅÅ
dz2 M = 1ÅÅÅÅÅÅÅ

r2 A dÅÅÅÅÅÅ
dr

 Ir2 dÅÅÅÅÅÅ
dr

M + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sin2  q

 d2
ÅÅÅÅÅÅÅÅÅÅ
df2 + 1ÅÅÅÅÅÅÅÅÅÅ

sinq
 dÅÅÅÅÅÅÅ

dq
 Hsinq dÅÅÅÅÅÅÅ

dq
ME

We can connect this to p̀2
ÅÅÅÅÅÅÅÅÅ
2 m

 in 3-D. I will derive it here but you will get

Zx ¢ p̀2
ÅÅÅÅÅÅÅÅÅ
2 m

À a^ = 1ÅÅÅÅÅÅÅÅÅ
2 m

 Yx ° p̀2 … a] = -  I Ñ2
ÅÅÅÅÅÅÅÅÅ
2 m

Mõ”÷÷ 2Xx†a\ = -I Ñ2
ÅÅÅÅÅÅÅÅÅ
2 m

M 1ÅÅÅÅÅÅÅ
r2 A dÅÅÅÅÅÅ

dr
 Ir2 dÅÅÅÅÅÅ

dr
 Xx †a\L- 1ÅÅÅÅÅÅÅ

Ñ2 Xx»L` 2†a\]  =

-I Ñ2
ÅÅÅÅÅÅÅÅÅ
2 m

M 1ÅÅÅÅÅÅÅ
r2 A dÅÅÅÅÅÅ

dr
 Ir2 dÅÅÅÅÅÅ

dr
 Xx †a\L]+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 mr2
Xx»L` 2†a\

This will use this to put the angular momentum into the 3-D Schrodinger eqn. It is reminiscent of orbital problems. 

[note: the classical eqn is E = 1ÅÅÅÅ
2

 m r° 2 + L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 mr2

+V(r)]

Now what follows is important. Ultimately what we want to do is to solve the Schrodinger eqn in 3-D

H
`

 †a\ =[ p̀2
ÅÅÅÅÅÅÅÅÅ
2 m

+V(x̀)] †a\=E†a\  where p̀ and x̀  are both vector operators (i.e. they have 3 components - an x,y and z)

Now going into position representation we get 

- Ñ2
ÅÅÅÅÅÅÅÅÅ
2 m
õ”÷÷ 2Xx†a\  +V(x̀)Xx†a\=EXx†a\   Now if V(x̀) is spherically symmetric then [H

`
,L

` 2
]=0 and  [H

`
,L
`

z]=0. 

Proof: What I need to do is to prove  [ p̀2,L
` 2

]=0   [ p̀2,L
`

z]=0   [V HrL,L` 2
]=0   [V HrL,L` z]=0  

Now since [A
`
,L

` 2
]= [A

`
,⁄Li

` 2
]=⁄[A

`
,Li

` 2
]=⁄ Li

`
[A

`
,Li

`
]+[A

`
,Li

`
]Li

`
     

So all I need to prove is that  [ p̀2,L
`

i]=0 and [V HrL,L` i]=0 
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Now if V(r) is spherically symmetric then dÅÅÅÅÅÅÅ
df

V(r) =0 and dÅÅÅÅÅÅÅ
dq

V(r) =0   and V
`
(r) in 

position representation is just V(r)

Xx» [V HrL,L` z]†a\=Xx»V HrLL` z†a\-Xx»L` z V HrL †a] = ÑÅÅÅÅ
i
AV HrL dÅÅÅÅÅÅÅ

df
 Xx †a] - dÅÅÅÅÅÅÅ

df
 HV HrL Xx †a]ME=

ÑÅÅÅÅ
i
AV HrL dÅÅÅÅÅÅÅ

df
 Xx †a] - V HrL dÅÅÅÅÅÅÅ

df
 Xx †a] - I dVHrLÅÅÅÅÅÅÅÅÅÅÅÅÅ

df
M Xx †a]E=0.  Ø [V HrL,L` z]=0

Either you can work it out for L
`

x and L
`

y  or as I do, argue that by symmetry [V HrL,L` x]=0 and [V HrL,L` y]=0    

Hence  [V HrL,L` 2
]=0   [V HrL,L` z]=0 

 [ p̀2,L
`

z]= [ p̀2,x̀ p̀y - ỳ p̀x ]=[ p̀2,x̀ p̀y ] - [ p̀2, ỳ p̀x ]=x̀[ p̀2, p̀y ] +[ p̀2,x̀ ] p̀y - ỳ [ p̀2, p̀x ]- [ p̀2, ỳ ] p̀x=

 [ p̀2,x̀ ] p̀y- [ p̀2, ỳ ] p̀x= [px
` 2,x̀ ] p̀y- [py

` 2, ỳ ] p̀x= px
` [px

` ,x̀ ] p̀y +[px
` ,x̀ ]px

`  p̀y- py
` [py

` , ỳ ] p̀x- [py
` , ỳ ]py

`  p̀x=

 -iÑ px
` p̀y-iÑ px

` p̀y+iÑpy
` p̀x+iÑpy

` p̀x= -2iÑ px
` p̀y+ 2iÑpy

` p̀x=  -2iÑ px
` p̀y+ 2iÑ p̀x py

` =0

 now if  [ p̀2,L
`

z]=0 ö [ p̀2,L
`

z
2
]=0 ö[ p̀2,L

`
i
2
]=0 ö [ p̀2,L

` 2
]=0 

 hence  [H
`

,L
` 2

]=0 and  [H
`

,L
`

z]=0.  QED

 We have proved before that for any angular momentum [ L
` 2

,L
`

z]=0 This means that H, L
` 2

and L
`

z share eigenstates, and in 
fact some of the eigenstates of H are degenerate and we will need the L's to break the degeneracy. So it becomes very 
important for 3-D problems to find the eigenstates of L

` 2
 and L

`
z. 

 Aside - why is there a degeneracy? We know that H and the rotation operator commute, i.e. [H, (1-i dfÅÅÅÅÅÅÅ
Ñ

L
`

z)]=0. This means 
that HI1 - i dfÅÅÅÅÅÅÅ

Ñ
 L
`

zM †n] = I1 - i dfÅÅÅÅÅÅÅ
Ñ

 L
`

zM H  †n] = EnI1 - i dfÅÅÅÅÅÅÅ
Ñ

 L
`

zM †n]  so the states  †n\ and the rotated state I1 - i dfÅÅÅÅÅÅÅ
Ñ

 L
`

zM †n] 
have the same enegy eigenvalue En, ie. there is a degeneracy.

We will call these eigenstates †n,l,m\. n is the radial quantum number - or if you wish the quantum number corresponding 
to energies. l and m will be the quantum numbers for L corresponding to j and m we had before. 

Now we are going to just solve - Ñ2
ÅÅÅÅÅÅÅÅÅ
2 m
õ”÷÷ 2Xx†nlm\  +V(r̀)Xx†nlm\=EXx†nlm\.  We will use the usual method of separation of 

variables where we will use the variables r, q, f  instead of x,y,z. Its easier. 

Xx †nlm\ = Xr, q, f †nlm\ = RnlHrL Yl
mHq, fL  [Typically we use Xr,q,f†nlm\=R(r)Q(q)F(f), but then I would just replace these 

symbols with the R and Y and that gets confusing. You can think of RnlHrL=R(r)  and Yl
mHq, fL=Q(q)F(f)]

  The R's are the radial solutions and will depend on V(r), the Y's are the spherical harmonics. [Note 
Yl

mHq, fL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 e-imf Pl

mHqL where the P's are the associated Legendre polynomials, but I wont refer to these. Too many 

names to remember]

Now lets define a particular position ket.  †nz] is a position eigenket of unit length in the n”÷  direction (it has nothing to do 
with energy or the n in †nlm\) Think of it as †nz]=†q, f\
We are going to isolate the angular part of our ket and think about †l,m\ where Xnz†l,m\=Yl

mHq, fL =Yl
mInzM

These things should be eigenkets of L
` 2

 and L
`

z so

 L
`

z†lm\=mÑ†lm\   (just like we did for J) so ÑÅÅÅÅ
i

 dÅÅÅÅÅÅÅ
df

Xnz†lm\=mÑXnz†lm\  and this eqn is easy to solve and we get for the f 

dependence Ynz †lm]~eimf. 

 Now Ynz †lm] is also an eigenket of L
` 2

 (again the eigenvalue is lHl + 1L Ñ2L
 L

` 2
 Ynz †lm] = -Ñ2A 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

sin2  q
 d2
ÅÅÅÅÅÅÅÅÅÅ
df2 + 1ÅÅÅÅÅÅÅÅÅÅ

sinq
 Isinq dÅÅÅÅÅÅÅ

dq
ME  Ynz †lm] = lHl + 1L Ñ2 Ynz †lm]
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 Now these are eigenkets of a observable so they are orthogonal  Xl ' m ' †lm\ = dl' l dm' m giving us

 Ÿ0
2 pdf Ÿ-1

1 dcosqYl
m*Hq, fL Yl'

m'Hq, fL = dll' dmm'    

 Now we already know the largest m one can have which is m=l (that is m="el" not one) so

 L
`

+ †l, l\ = 0   so     ÑÅÅÅÅ
i

 e≤if(≤ i dÅÅÅÅÅÅÅ
dq

- cotq dÅÅÅÅÅÅÅ
df

)Ynz †ll\=0   but we know Ynz †ll\~ eilf

   ÑÅÅÅÅ
i

 eif(i dÅÅÅÅÅÅÅ
dq

- i l cotq)Ynz †ll\=0   Ø    dÅÅÅÅÅÅÅ
dq

Ynz †ll\= l cotqYnz †ll\    and we can guess Ynz †ll\~sinlq       

lets check it  dÅÅÅÅÅÅÅ
dq

 sinl q =  l sinl-1 q cosq=l cosqÅÅÅÅÅÅÅÅÅÅÅ
sinq

 sinl q=l cotq sinl  q   i.e. it works 

so  Ynz †ll\ = cleilfsinlq    We can figure out the normalization from the eqn above and we get

 cl = A H-1LlÅÅÅÅÅÅÅÅÅÅÅÅÅ
2l  l!

E"####################H2 l+1L H2 lL!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p

   and then as we did in the case of the SHO we can use L- and just get the rest of them.

 so Ynz †l, m = l - 1\= Ynz … L-  †l, m = l\ = e-if I-i dÅÅÅÅÅÅÅ
dq

- cotq dÅÅÅÅÅÅÅ
df

M eilfsinlq   and then you have to normalize. We will end up 

with  (for m¥0)

 Yl
mHq, fL = H-1LlÅÅÅÅÅÅÅÅÅÅÅÅÅ

2l  l!
 $%%%%%%%%%%%%%%%%%%%%%%%H2 l+1L Hl+mL!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 pHl-mL!  eimf 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sinm  q

 dl-m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dHcosqLl-m  HsinqL2 l 

for m<0 then  Yl
-mHq, fL = H-1Lm@Yl

mHq, fLD*

Now you can see pictures of these later in these notes. What you see in the the pictures is that the spherical harmonics 
already show the pattern for the hydrogen atoms. This is true because the potential which is spherically symmetric will not 
change the angular shape. The l quantum numbers 0,1,2,... correspond to s,p,d,...

Now since L is a type of J, it must come in either integer or 1ÅÅÅÅÅ
2

integer. But as I will show, if it is 
1ÅÅÅÅÅ
2

integer, we get solutions that don' t make sense.

Lets take l = m = 1ÅÅÅÅ
2

 as the simplest case. Then we have  Ynz ° 1ÅÅÅÅ
2

 1ÅÅÅÅ
2
] = c 1ÅÅÅÅÅ2

ei fÅÅÅÅÅÅ2 sin
1ÅÅÅÅÅ2 q  If we apply L- to this we get

e-if I-i dÅÅÅÅÅÅÅ
dq

- cotq dÅÅÅÅÅÅÅ
df

M c 1ÅÅÅÅÅ2
ei fÅÅÅÅÅÅ2 sin

1ÅÅÅÅÅ2 q= -c 1ÅÅÅÅÅ2
e-i fÅÅÅÅÅÅ2 cotq sin

1ÅÅÅÅÅ2 q=-c 1ÅÅÅÅÅ2
e-i fÅÅÅÅÅÅ2 cosqÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!sinq

 . This is infinite at q=0 or p. It means that 

some probabilities would be infinite which we believe is not true. So we reject these solutions. Orbital angular momentum 
has only integer values. 
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