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Lecture 23
3D, Rotations, and Angular momentum
We will be spending the rest of the quarter on rotations and angular momentum in 3 dimensions. This will lead to the 
hydrogen atom once we add a 1 ê r  potential.  We had a pattern of getting to these operators. The idea of translations lead 
us to momentum, time evolution lead us to energy. We saw that the homogeneity of space and time led to momentum and 
energy conservation. We will now consider rotations, from which we will get angular momentum. This will not be just the 
angular momentum of stuff going around in circles however. [Don't worry - it will include that]. This way of deriving the 
idea of angular momentum will force us to see that there is such a thing as spin which carries an angular momentum even 
though nothing is going around. It will also force us to give it a value of ÑÅÅÅÅ

2
-Rather the value Ñ is from experimental 

measurements, but the 1ÅÅÅÅ
2

will be forced on us. We will also see some very funny things about the rotational properties of 
spin 1ÅÅÅÅ

2
 objects.

Lets start by thinking about classical rotations in 3-space.  We will use matrix notation and look at the rotation of a 
vector
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zzzzzz       with  RRT = RT  T = 1     i.e. orthogonal matrices RT = R-1   which means that the norm is 

preserved  i.e. "################################Vx2 + Vy2 + Vz2 ="#####################################V 'x2 + V 'y2 + V 'z2

The form of a rotation around the z axis by an amount f is RzHf)=
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zzzzzzz  we will use the RHR to specify 

the positive direction.  We can expand cos and sin for small rotations e and get
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   where we have ignored higher order terms in e. We can also write down Rx and Ry
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  RyHe)=
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        Lets now take a look at the commutator of 

Rx and Ry (this is classical!)
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      Ry Rx=
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 @RxHeL, RyHeLD =
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zzzzzzzz=RzHe2L-1     dropping terms of order e3   This makes sense. If we set e=0, the left gives 

zero, and for the RHS RzH02L=1

 This then tells us that rotations do not commute even in classical physics. Try it with a book. Rotate in 90ù around the x 
axis then 90ù around the y axis. You will NOT get the book in the same position if you rotate first around y, then x. 

 Aside: For those who are into math, the rotations R form a group, which have an identity operator (1), closure, inverses 
and associativity.  

Now what happens to a ket when you rotate in 3 space? It may be funny. Think of those pictures where it looks like one 
thing when you look at it from one angle and another when you look at it from a different angle. [These are called 
Lenticular images] The standard rotation matrix will not tell you that the scene changes. In the same way kets may change 
in some unexpected way. Lets try to figure this out. 

We will do this by analogy with translations in space and time where we figured out what the appropriate operator was. 
Lets start with a ket †a\ and rotate it   so †a\R=D

`
(R)†a\  where the dimensionality of D

`
 is that of the ket space, e.g. for spin, 

it is two dimensions so D
`

 would be a 2x2 matrix corresponding to the change in the ket space when a rotation is made in 
3-D space. (got it?) Its like an operator that tells you how the picture changes when you rotate it in 3-D space. Now let us 
think of infinitessimal rotation so we can write D

`
(R(e))=1- G

`
e  where G

`
 is some operator. This is just like we did for space 

translations where G
`

= p̀xÅÅÅÅÅÅÅÅ
Ñ

for translations in x and time translations where G
`

= H
`

ÅÅÅÅÅÅ
Ñ

. In this case we will call it J
`

k   where 

k=x,y,z for rotations around the x, y, z axis.  So we have G
`

= J
`
kÅÅÅÅÅÅÅÅ
Ñ

  and e=df giving
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(R(df))= D
`

(n”÷ , df)=1- ( J
”̀÷
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Ñ

)df  where n”÷  is a unit vector which is the axis around which we rotate. NOTE that J
”̀÷

∫r̀
”
× p̀

”÷
 

(We will see this come up later and we will define  L
”̀÷
=r̀
”
× p̀

”÷
  where L is a type of angular momentum called the orbital 

angular momentum)

 For finite rotations  D
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Ñ
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ÿǹ fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ

)

Just like we did before we will start with a classical formula  @Rx, RyD=Rz-1 and assume that these become operators 
which operate on ket space, i.e. the D's, (actually we can say the D's have the same group properties as the R's)  so we will 
assume   AD` xHeL, D

`
yHeLE=D

`
zHe2L-1  (note that the term on the right has an e2L. We will stick with infinitessimal rotations 

and we get for the J's (keeping things to order e2L
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z    and doing it for the other axis we get

[J
`

i , J
`

j]=iÑeijk J
`

k    Very important! Some would go so far as to say this is the eqn that defines angular momentum

At the moment it may seem somewhat abstract (and it is). We will see that angular momentum comes in two flavors. The 
first is spin, which we know well, and orbital angular momentum. I will show you later how these naturally come about. (I 
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hope you will not be surprised when we use raising and lowering operators again). First I would like to take spin as an 
example to give you a feel for it. We will see that it has  bizarre feature about it. 

Spin as an example of angular momentum

As a reminder we had [S
`

i , S
`

j]=iÑeijk S
`

k  which better be true since it is a kind of angular momentum. Now in this case 

D
`

z(f)=exp(- i S
`
z  fÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ

)      and so we have D
`

z(f)†+\=exp(- i S
`
z  fÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ

) †+\ = e- ifÅÅÅÅÅÅÅÅ2  †+\    and  D
`

z(f)†-\ = e
ifÅÅÅÅÅÅÅÅ2  †-\ . Remember that in 

ket space we have 2 dimensions (+ and -) and in regular cartesian space we have 3-D (x,y,z)

Now lets look at what happens to some ket †a\  when we rotate it  †a\R=D
`

(R)†a\.   First lets write †a\ = c+ †+\ + c-†-\
†a\R = D

`
z HfL †a] = D

`
z HfL@c+ †+] + c- … -]E = c+e- ifÅÅÅÅÅÅÅÅ2  †+\ +c-e

ifÅÅÅÅÅÅÅÅ2  †-\.  The interpretation of this ket is not so obvious, but 
this is what the rotated ket looks like, just as its not so obvious in our picture that it changes when we rotate it. 

Instead of figuring out what happens directly to †a\ lets look at the expectation value of some spin operator, say S
`

x

XSx
` \=Ya » Sx

` » a]     and when we rotate the ket we get 

XSx
` \R =RYa » Sx

` » a]R=Ya … D
`

z
†

 Sx
`

 D
`

z … a].  We can do this rather simply by remembering that we can write  

Sx
`

= ÑÅÅÅÅ
2

(†+\X-§ +  †-\X+§)   and Sy
`

= -iÑÅÅÅÅÅÅÅÅÅ
2

(†+\X-§ -  †-\X+§)  so 

XSx
` \R =Ya … D

`
z
†

 Sx
`

 D
`

z … a]= ÑÅÅÅÅ
2
Xa À expJ i S

`
z  fÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ

N@†+\ X-§ + †-\ X+§D expJ -i S
`
z  fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ

N À a^

= ÑÅÅÅÅ
2
Xa »  9e

ifÅÅÅÅÅÅÅÅ2  †+^ X-¶ e
ifÅÅÅÅÅÅÅÅ2 + e- ifÅÅÅÅÅÅÅÅ2  †-^ X+¶ e- ifÅÅÅÅÅÅÅÅ2 = »  a \= ÑÅÅÅÅ

2
Xa »  8eif †+\ X-§ + e-if †-\ X+§< »  a \=

  ÑÅÅÅÅ
2
Xa »  8Hcosf + isinfL †+\ X-§ + Hcosf - isinfL †-\ X+§< »  a \= ÑÅÅÅÅ

2
Xa »  H†+\ X-• + †-] X+•M cosf + H†+\ X-§ - †-\ X+§L isinf »  a \

=Xa »  Sx
`

 cosf - Sy
`

 sinf »  a \=XSx
` \ cosf - XSy

` \sinf

and there are similar relationships as follows for Sy and Sz so 

XSx
` \R=XSx

` \ cosf - XSy
` \sinf     XSy

` \R=XSx
` \ sinf + XSy

` \cosf      XSz
` \R=XSz

` \
So the expectation values of S

`
  just rotate. It makes sense. 

In fact we can write using the usual cartesian rotation matrices that

XSk
` \R = ⁄l RklHfLXSl

` \ and more generally XJk
` \R = ⁄l RklHfLXJl

` \   so the expectation values of angular momentum behave 
just like an ordinary 3-vector in 3-D space. 

Now lets take a look at a single ket again and see what is happening when we rotate it. You will see one of the more 
bizarre things about QM and spin. Lets write 

»a\=†+\X+§a\+†-\X-†a\       Now we will rotate it 

†a\R = D
`

z(f)†a\=D
`

z(f)[†+\X+§a\+†-\X-§a\]=e- ifÅÅÅÅÅÅÅÅ2  †+\X+§a\ +e
ifÅÅÅÅÅÅÅÅ2  †-\X-§a\  now lets consider a complete rotation, i.e. 

f=2p

†a\2 p =e-ip †+\X+§a\ +eip †-\X-§a\  =[cos(-p)+sin(-p)]†+\X+§a\+[cos(p)+sin(p)] †-\X-§a\ =-†+\X+§a\- †-\X-§a\= -†a\ 
So after a 2p rotation, the ket is NOT the same, but has an extra factor of -1. You have to go around twice before you get 
back the original!!!  †a\4 p =†a\
OK. So you argue that the only think that matters is the square of the wave function so the extra minus sign can't be 
observed. It turns out, there IS a way to observe it - by using interference. 
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Remember that you could use magnetic field to rotate spin

H
`

= m”÷ ÿ B”÷÷ = -I eÅÅÅÅÅÅÅÅ
mc

M S”÷ ·B”÷÷    (e is negative)  Now lets let B”÷÷  be a static magnetic field in the z direction  so H
`

=wSz
`

  and the time 

evolution operator is expI- i H
`

 tÅÅÅÅÅÅÅÅÅÅÅ
Ñ

)=expJ- i w Sz
`

 tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ

)  i.e. it looks exactly like a rotation operator where f=wt

Now you could set up the following apparatus and observe destructive interference after a 2p rotation and constructive 
interference after 4p. This was actually first done in 1975

B

rotate by  2π

destructive interference

electrons

B

rotate by  2π

destructive interference

electrons

Remember Hermonie's warning to Harry Potter about the dangers of going back in time? Strange things happen when 
folks go back and meet an exact replica of themselves. If they had turned around an odd number of times and met 
themselves, they would interfere destructively and be annihilated!

Rotations for spin 1 ê 2 using matrices

Now we will do rotations for spin 1/2 using matrices. Much of this is just review, but I will add a few definitions. In 
particular I will introduce c which are for spin like the wavefunctions y(x) i.e. roughly X±†a\= c    just like Xx †a\ = ya(x)  
for the state alpha. Note that in general we will have particles with both kinds of wave functions and will have to specify 
both of them but lets wait till we get to the hydrogen atom for this.  

So †a\=†+\X+§a\+†-\X-†a\ UJ X+§ α\
X−†α\ N=c        and c†=H Xα †+\ Xα †−\ L

We will also write for the eigenkents of Sz:  c+ =J 1
0
N  c- =J 0

1
N  c+

† =H 1 0 L c-
† =H 0 1 L

So c =
i
k
jjj
X+§ a\
X-†a\

y
{
zzz =

i
k
jjj

c+

c-

y
{
zzz = c+ c+ + c- c-       c† = H Xa †+\ Xa †-\ L = H c+

* c-
* L = c+

* c+
† + c-

* c-
†

We also have the pauli spin matrices S
`

k = ÑÅÅÅÅ
2

 sk      sx = s1 =
i
k
jjj
0 1
1 0

y
{
zzz   sy = s2 =

i
k
jjj
0 -i
i 0

y
{
zzz  sz = s3 =

i
k
jjj
1 0
0 -1

y
{
zzz

XSk
` \ = ÑÅÅÅÅ

2
c†skc  

Some  useful identities
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8si, s j< = 2 dij    where 9à, b
`= = à b

`
+b

`
à       and @si, s jD = 2 ieijk sk

si s j = dij + ieijk sk   e.g. s1 s2 = i s3

sk
† = sk   (its hermitian)

detHsi)= -1

TrHsiL = 0

For vectors a”÷  and b
”÷
  (s”÷÷ ·a”÷ )( s”÷÷ ·b

”÷
)= a”÷ ÿ b

”÷
+i s”÷÷ ÿ Ha”÷ × b

”÷
)

Proof:: 

    ⁄a j s j ⁄bk  sk = ⁄ j,k s j sk  a j bk = ‚
j,k

 I 1ÅÅÅÅ
2

 8s j, sk< + 1ÅÅÅÅ
2
@s j, skDM a j bk = ⁄ j,k  Hdjk + iejkl sl)a j bk=  a”÷ ÿ b

”÷
+is”÷÷ ÿ Ha”÷ × b

”÷
)

If all components of a”÷  are real then ( s”÷÷ ÿ a”÷ L2 = » a◊÷  »2

    Proof:   s”÷÷ ·a”÷ =⁄ak  sk   =i
k
jjj

a3 a1 - ia2

a1 + ia2 -a3

y
{
zzz           

    ( s”÷÷ ÿ a”÷ L2 = i
k
jjj

a3 a1 - ia2

a1 + ia2 -a3

y
{
zzzik
jjj

a3 a1 - ia2

a1 + ia2 -a3

y
{
zzz= i

k
jjj
1 0
0 1

y
{
zzz Ha1

2 + a2
2 + a2

2) = » a◊÷  »2i
k
jjj
1 0
0 1

y
{
zzz

The Rotation operator is  D
`

(n”÷ , f)=exp( -  S
”÷

ÿǹ fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ

)=exp( -  s”÷÷ ÿǹ fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

)

Now Hs”÷÷ ÿ ǹLn=9
1 n even

s”÷÷ ÿ ǹ n odd

exp( -  s”÷÷ ÿǹ fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

)= [ 1 - H s”÷÷ ÿǹL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2!
 I fÅÅÅÅÅ

2
M2 + H s”÷÷ ÿǹL4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4!

 I fÅÅÅÅÅ
2
M4 ...E + iA H s”÷÷ ÿǹLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1!
 I fÅÅÅÅÅ

2
M - H s”÷÷ ÿǹL3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3!

 I fÅÅÅÅÅ
2
M3 ..E = 1

`
 cosI fÅÅÅÅÅ

2
M-is”÷÷ ÿ ǹ sinI fÅÅÅÅÅ

2
M

=
i

k

jjjjjjj
cosI fÅÅÅÅÅ

2
M - inz sinI fÅÅÅÅÅ

2
M H-inx - nyL sinI fÅÅÅÅÅ

2
M

H-inx + nyL sinI fÅÅÅÅÅ
2
M cosI fÅÅÅÅÅ

2
M + inz sinI fÅÅÅÅÅ

2
M
y

{

zzzzzzz    This is a handy thing to remember when rotating spin since

c öexp( -  s”÷÷ ÿǹ fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

)c 

Now sinceXSk
` \ ö ⁄l RklHfLXSl

` \   and XSk
` \ = ÑÅÅÅÅ

2
c†skc      we can write    c†skcö⁄l RklHfLc†slc

Also note that exp( -  s”÷÷ ÿǹ fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

)=1
`

 cosI fÅÅÅÅÅ
2
M-is”÷÷ ÿ ǹ sinI fÅÅÅÅÅ

2
M  = 9 -1 f = 2 p

1 f = 4 p
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