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Lecture 21- 1 dimensional barrier problems

OK so now we have looked at a couple different potentials- the square potential and the SHO potential - bothin 1
dimension. We will continue to stay in one dimension. In each of these cases, the potentials wereinfinite at the sides, so
the particles were aways bound. We know that is not true in real life. Bonds break; Springs break; we might guess that
these things lead to decays, and other funny things like tunneling. We will start looking at such cases - and take as afirst
model, just square shaped potentials - to make things easy.

We will start with the time independent schroedinger egn - that iswe will look at solutions which have a particular
defined energy (eigenfunctions of energy). Such solutions also have a defined momentum (up to a sign) and hence are not
localized. Here we can think of acouple of examples. Thefirst isabeam of particles. Classically you think of a beam of
particles like a stream of bullets from a machine-gun. Well localized things that come one after another. Quantum
mechancially though, we think of awave coming in. That iswhy we can consider a beam as an unlocalized thing, i.e. Ax
islarge. A second exampleisaparticlein afinite potential well. Y ou may think itslocallized, but its not. It can leak out
since some of the wavefuntion (in the position representation) (x|a) hasto lie outside the well - since the particleisNOT
localized. Hence the phenomenon of decay. We will look at beams hitting finite barriers and potential wellsfirst, then
move on to particles stuck in afinite potential .

Beams and curreents

Clearly awavefunction for a beam will need a different normalization procedure. Before we required that

fj’; | ¥(X) |2 dxbefinite. For beam which extends to oo this would be infinite, so what we do isto define

fa b | y(X) |2 d x befinite. This should count up the number of particlesin the interval (b-a). So

fb | y(X) |2 dx = N, i.e.thenumber of particlesbetweenaandb. Thismeans | (x) | d x=p(x)dx=dN where

| y(X) [>=p(x) has units of particles/unit length, giving ¢(x) units of length~¥2. In 3-D p(x) has units of length~3, soy(x)
has units of length=32. Asa 1-D example abeam of 10 neutrons/ cm with momentum

7k would have awavefunction y(x) = 10%2 -« cm=1/2_ Note that "particles' does not have a unit.

A beam of particles isa current, so we need to think about the current density J which is avector quantity. Lets think
about thisin 3-D first and think about electric charge and electric current. We have the continuity egn %" +V-J=0. This
just saysthat if you look at some unit volume, the change in the charge inside that unit volume s just the divergence of the
current - i.e. the amount of water in the sink is equal to the current of the water coming in the faucet - the water going out
the drain. Now in 1-D we can just write thisas =+ dp +ﬂ>i—0 Now p(x) =] ¥(x) |2, so what is J? We want to figure out what

dt is. Hopefully it will be a derivative of x and then we can find J. The only egn we have around to help usisthe
Schroedinger egn. We will use the time dependent one we found in lecture iz % la, t)= H|a,t) . Wewill need to put this
into the x representation. # % (X |a, H=(X|H|a,t)

KRl =X+ VoIt = 2 (1P o, 1) + V(0 (Xt
X p?la, t) = (X pple, t>—fafx <x\p|x><x|ma 0 =-# [dx L 5x-x) Lxla, =12 L Lixja, =1 &

dx2
(X|a,t) Soih < d - (X, ty=— 2= dx2 (X|a, HHV(X) (Xa,t)  and setting lp(x,t)—<xla,t)

‘;* d—ztﬁ(x H+V U (x,)= ih & 408
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and writing H as—ﬁ;— —d2—+V(x) (i.e. H in the position representation) we can write Hy(x,t)= i %w(x,t) S0
%w(x,t) =- —Hw(x t) anditscomplex conjugate — & ¢*(x t) = H UE(xb)

Now Sy =y < gy Sur= -y LAY )+~ H g () now since V(x)=0

d e _ ih (s d2 d2 $d1,// dy*

Elﬂ lﬂ—L—(lﬂ Ezlﬂ—lﬁgzlﬂ)——&[m( &—lﬂ—d;‘)] S0

- A gL (v < @ _ )] 0 and comparing thisto d‘” ‘” deX =0 we see that

dx - 2mi
in1-D J=-(yr &L -y &) in 3D J=L(y Iy -y Iy

The unitsaretime™! for 1-D and length~2 time™* for 3D

Note on the units of J for 1-D and 3-D.

3-D %+VF=O Lotume | ¥ 17 dr ifvolumep(f) d®r =N - units of p(f) are 1/L3 - units of %are 1/(L3T) »
units of V-J are 1/(L3T) » unitsof J are 1/(L?T) i.e. like charge/cm?/sec

1-D d”+'“X>< =0 [°|y(x) 1> dx= [p(x)dx=N - units of p(x) are 1/L > units of d” are 1/(LT) - units of %J
are 1/(LT) » unitsof J are 1/T i.e. like charge/sec

We want to think about a beam hitting some sort of barier. Some of it gets reflected and some get transmitted. L ets assume
that before and after the barrier its just represented by a plane wave, over some potential that changes only at the barrier,
e.g. astep function. There in an incoming wave function, areflected wave function, and a transmitted wave function.

V=0 before the barrier and V after the function

. 2.2
Yine = A€K1X1Y B = g = hzknlw
Yret = BE®IX1) By = Ejne
- 72 kp?2
Ytrabs = Cekgx-w1b Etrans =fiwy = 25 +V

If you dont quite get al this, dont worry, it will become clear in amoment. We then get for the currents

We would like to figure out how much stuff isreflected, and how much is transmitted so we define transmission and
reflection coefficients as

|c |2 ko andR:‘m

_| B
‘]inc_| |

— | Jtrans
T_| 2

Jinc

Setting up the problem

We will assume the potential to be square like. That way we can divide the problem up into pieces where the potential is
constant (and the Sch egn is easy to solve) and then just match stuff up at the boundaries. Hereisatypical barrier. You
can see the height of the barier which isV, the sides of the barrier are at +a, the energy of the beam E, and the three
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regions where the potential V isjust a constant.

V(x)
A

\ 4
x

-a a

2

2
0= ST E-V D¢

w2 52
(_ﬁ e +V(X))<P(X) =Ep(x) » -

Now V(x)=0inregions| and Il1, and V(x)=V inregion Il. If we set kzzi—gﬂ (E -V (x)) thenthediff egniseasy to
solvein each of the three regions, since k is a constant and in this case positive (in each of the three regions). The
solutions are either sines and cosines, or e*'K%, Either works, but the exponentials are easier since they are eigenfunctions
of momentum, and hence you can see which way they are going. The general solution in each of the threeregionsisa
combination of e and e, Letsdenotek;® =2 E i.e. therelevant k for regions| and I11 and kp? = i—g‘ (E-V) for

region I1. Now we can write down general solutionsin all three regions
(X)) = Ae“‘l X +Be‘”‘l X onX) = CeikZX +De_ik2X omX) = Fe“‘l X +Ge‘“‘1x

Solutions like e have a positve eigenval ue for the momentum so they have positive moemtum and are going forward
(+x direction). Solutions like e are going in the -x direction. Now lets clarify our problem. We have a beam coming in
from the left. It does something at the boundary at x=-a, and something else at the boundary at +a. What we expect is that
some of the beam is transmitted and some s reflected. Y ou might have a question asto why beam is reflected at x=+a,
when it isnot expected classically - we shall see. Inregion 111 however, thereis no reflected wave - there is nothing out
past x=ato reflect off of. Hence we will set the wave going in the -x direction in region 111 to zero, i.e. G=0. Now we
already know what the k's are. We need to see if we can find out what the coefficents are. We get the transmission

coefficient T = | & & M and for the reflection coeficient R= | £ *

regionl
There is anormalization condition which sets A=1 (i.e. that is the incoming beam). We need to find B and A. The way we
do thisisto match the wave functions and their first derivatives at the boundaries. Why must these things be matched? If
the wave functions did not match then the first derivative would be infinite. Since the momentum is cacluated in the x
representation as the first derivative - thiswould give an infinite momentum - an unphysical result. If the first derivatives
did not match then the second derivative would be infinite. Looking at the Schroedinger egn we see that such an infinity in
the second derivative would mean the the Sch. egn could not be satisfied at the discontinuity. OK so we will require
o (—)=pn(-a) , en@=¢n(@ and 2 “’L;_a) =4 "'('b((_a) , d i',:((a) =9 "('j';(a) . Now these will give us 4 eqns which we will
have to solve. Thisisapain, but | will doitin asecond. Letsfirst take an easier problem to solve algebraically, that is just
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asingle step.
A single step

V(x)

\ 4
I.I.I

A\ 4
x

Now there are only two regions. k;? =21 E inregion | and ko? = il—rzn (E - V) for region 1.

o1 (X) = Adkix 4Be kX o (x) = Cd*2*  and we have set D=0 since there is nothing to reflect off of for x>0
Now ¢, (0)=¢,(0) and 4010 _de1O 46 the matchi ng conditions. We will set A=1, so we have two egn's and the two

dx dx
unkowns B and C. So

gkix 4 Berikix=CgkaX gnd k; €k1% — Bk, e k1% = Ck,ek2X  These must be true at x=0 so

1+B=C and k; —Bk;=Ck; »

- —1-ko/k 2 -
— =(1+ e =
ki — Bk;=(1+B)k, - B Trkolky and C Ty giving us
_ 2( ko \2 _ _4ko/kg _ 2 _ ’ 1-ko/kq |2 k_ [1_V
T=|C| (kl) = Tk, andR= |B|*= Tk where & 1 3

L ets take some cases. When V=1/2 E then the reflection coefficient is about 3%, so the funny QM effect is small but real.
Letsvary V.

1) V=E t—i:o T=0, R=1full reflection
2) 0>V<E 0<';—2<1 T and R non-zero
1
3V-0 2=1 T=1R=0no reflection
1

4) V<0 E—i>1 T and R non-zero, i.e. there is reflection again!

When V issmall compared to E then the reflection coefficient is ~0 as we might expect. When V=E then then T=0 and
the whole beam is reflected. Suppose V is negative, i.e. we are shooting a beam off of a cliff.

Now what happensif V>E??? Then t—z isimaginary. Now we use the incoming beam as the defining beam, which is
1

moving forward so k; hastobereal. Thismeansthat k; isimaginary. Sincek, = /1 - % ky letswriteks = ixko SO
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Ko=+/ % — 1 ky which inthiscaseisreal. Thenwe have ¢ (x) = CékeX = Ce*2X

We see that we no longer have atraveling wave, but rather an exponentially dying wave function BUT it actually
penetrates into the barrier. As you might guess this sets things up for tunneling.

V(X)

A 4
m

\ 4
x

Back to thetunneling problem

Ok, let'swrite down the 4 egn we have from matching the wave functions and the derivatives across the boundaries
Ae—ikl a +Be+ik1 a_ Ce—ik2 a +De+ik2a

Cek2a +De k2 = Feki2

-Ak]_ e‘ikl a +Bk1 e“kla = —Ck2 e‘ikZ a +Dk2 e+”<2a

Ck, €k2a@ _Dk, k22 = Fk, k12 where we have already set G=0
2 ky?—kp2 \? - 0
% = | % | :21+ % (ﬁ) sin’(2k;a) and plugging in k;? =22 E and ko = 2—5" (E-V) weget
1 V2 o .
T = 1+ 4E(E_V)sn 2koa) and R=1-T

Now letstake alook at some cases. In the case we are thinking about where E>V, then k; isreal, and everything makes
sense. Suppose, however, that E < V. Canit get over thebarrier? Thisis asimillar situation to the one we had in the
single step. Lets have alook. Again letsset ky = ik,, where k;, isreal. (note- my convention is different than the
book)Then

1 _ 4 V2 on
T_1 4E(V_E)sm(2u<2a).

What issin(ix) ? sind = % (@ - el s0 sin(ix)=% (e —e)= - % (& —e¥)= -Tl sinh(x)
sin? (ik) = —sinh?(k) so

2 .
% =1+ 4EX/_E) sinh?(2k,@) ko = 4/ 271_21 (V—E) «kyisrea for E<V

Now lets rewrite the three solutions
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@1 (x) = AdkiX4Bek1X g (x) = Ce*2X +De2X ¢y (x) = FekLX
V(x)
A
| 1
I
Vv
-a a >
l -
0.8y
0.6¢
0.4¢
0.2¢
1 2 3 4
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Now let take alook at the following case where the potential energy in region |1 is negative.

V(X)
A

\ 4

Rewriting thingsin terms of |V| to make things easier to think about we get ky2 = i—’zn (E+ |V ]) weget

% =1+ ﬁiwﬁ sin’(2k,a) and R=1-T. Now for both this case and the original case of a postive V when E>V we get

perfect transmission for 2k, a=ns. In this case 2a Zh—g" (E + |V |) =nr and solving for E we get
. . 1 h 2
E(perfect transmission) = - (izﬂa_) -V

An attractive square wave potential is a reasonable model for the scattering of a beam of electrons by atoms. If you shoot
abeam of electrons at arare gas, at certain energies, the electrons penetrate perfectly - thisis the Ramsauer-Townsend
effect. Again - awierdness of QM. Here is a picture of the transmission coefficent vsthe energy of thebeamin eV.
Where V=-5 eV and a=1000 angstrons, i.e. athin layer of gas

0.201 0.202 0.203 0.204 0.205 0.206

For more pictures with labels see gm21cont.pdf

Moredifficult potentials— e.g. theSHO
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Theisastandard approximation method called the WKB Approximation (for Wentzel, Kramers, Brillouin) to figure stuff
out for more complex potentials. | will not actually deriveit here but | will just give you the result.

WKB:

T=exp(-2 fx i2l< dx) where K=\/ 2721 (V(X¥) — E) and x; and x, are the classical turning points, that is the points were
E=V(x) (soV(x1)=E and V(xp) = E)

T:exp(—zfxfdx,/ 272"3 (V) -E))

Also the energies allowed in the well will obey the condition

1 X 1
2_7;le2 2mE -V(x) dx:(n+5)%

Lets see these formula at work. First for aa couple of non-transmission problems

How about the infinite potential well with walls at 0 and a? Here within the well V=0

1 a —V2ME (4 L) R — 4?1 (. 12 pwks _ #%a? 1)2
o= Jo V2mE dx =YS"=a=(n+ ) 2 andweget2mE= 5~ 7 (n+ 2)°  EVKB =T (n+ 3)
Theright answer is of course E™ = ;’%22 (nN)?> which is not bad for n reasonably large. Thistells us something - the

WKB is asemi-classical approxinmation and is good for large quantum numbers. Note that in this case the n=1 state is off
by more than 100% but for n=10, its good to about 10%.

Now the SHO where the edges walls go to infinity.

V(X) = % mw? X2 and after some work we get Ey = (n + %) fiw which is exactly the right answer.

Now letstry the only tunneling problem we have done, the square potential barrier. Remember

121+ 2 sint?(2x,a) . Letslet E<<V s0k=y 20 (V —E) where

4E(V-E)

we will assume that 2k, a islargeand sincesinh(z) = % (€*—e?) we will assumethat the e ? termis negligible

-2
Tred L4 %[% exp(2a+/ ihgl V-E)| ~16 5exp(—4a,/ éfgl V-E) ad
TWKB —exp(-2 fxxlzcﬂx,/ il—zm (V(x) - E) J=exp(-2 f_yx,/ i—zm (V- E))=exp(-2+/ i—g‘ (V-E) (a+a))=exp

(-4a4/ %LZE V-E) whichisoff by 16E/V (i.e.if E~1/16V then it would be exact otherwise its off)



