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NA49 (Pb+Pb, CERN), PHENIX and STAR (Au+Au, BNL) have presented measurements
of the event-by-event average pT (denoted MpT ) in relativistic heavy ion collisions. Event-by-
event averages are most useful to resolve the case of two or several classes of events with e.g.
different temperature parameters. The distribution of MpT is discussed, with emphasis on
the case of statistically independent emission according to the semi-inclusive pT and charged
multiplicity distributions. Deviations from statistically independent emission are quantified
in terms of a simple two component model, with the individual components being Gamma
distributions.

1 Semi-Inclusive Distributions

In p-p and heavy ion collisions, the semi-inclusive distributions of charged multiplicity, n, and
transverse momentum, pT , for a given centrality class (or impact parameter), summing over all
events in a class, are typically Negative Binomial Distributions (NBD) and Gamma Distribu-
tions, respectively. 1,2 The NBD is the first departure from a Poisson distribution (for repeated
independent trials, each with the same probability for a given outcome) which forms the basis
of most physicist’s ‘intuition’ for the statistics of random processes. The NBD allows some
correlation, which is represented by a parameter parameter, 1/k, which is zero for a Poisson
distribution:

1
k

=
σ2

n

〈n〉2 − 1
〈n〉 , (1)

where 〈x〉 is the mean and σ2
x is the variance (σx is the standard deviation) of the quantity x:

σ2
x = 〈x2〉 − 〈x〉2 . (2)

The Gamma distribution has particularly simple properties under convolutions and scale
transformations and for these reasons has proved useful in the study of ‘ET ’ distributions. 3 The



Gamma distribution is a function of a continuous variable x and has paramters p and b

f(x) = fΓ(x, p, b) =
b

Γ(p)
(bx)p−1e−bx (3)

where p > 0, b > 0, 0 ≤ x ≤ ∞, Γ(p) = (p − 1)! if p is an integer, and f(x) is normalized,∫ ∞
0 f(x)dx = 1. The n-fold convolution of fΓ(x, p, b) is simply fΓ(x, np, b).

The semi-inclusive single particle pT distribution is typically a Gamma distribution with
p = 2, and the parameters of the distribution can be derived from the semi-inclusive mean and
standard deviation, 〈pT 〉 and σpT :

p =
〈pT 〉2
σ2

pT

b =
〈pT 〉
σ2

pT

. (4)

2 Event-by-Event averages

In heavy ion collisions, events in a given semi-inclusive class may contain many particles so it
has become popular4 to study the distribution of the average of a quantity x over the n particles
for each event, the event-by-event average:

x̄(n) =
1
n

n∑

i=1

xi . (5)

For x = pT , the event-by-event average transverse momentum has been denoted 4 MpT where n
also varies from event-to-event.

3 “It’s not a Gaussian it’s a Gamma distribution”

For statistically independent emission an analytical formula for the distribution in MpT can be
derived using the convolution property of the Gamma distribution for the sum of statistically
indendent samples from a given population. 2 It depends on the 4 semi-inclusive parameters
〈n〉, 1/k, b and p which are derived from the quoted means and standard deviations of the
semi-inclusive pT and multiplicity distributions (Eqs. 1, 4)

f(y) =
nmax∑

n=nmin

fNBD(n, 1/k, 〈n〉) fΓ(y, np, nb) where y = MpT . (6)

The result is in excellent agreement with the NA49 Pb+Pb-central measurement 4 and also with
the new PHENIX central measurement in Au+Au at

√
sNN = 130 GeV at RHIC. 5 (see Fig. 1).

Also the Gamma distribution shape is now obvious for the less central data.

3.1 Mixed Events as the Random Baseline

In Fig. 1-right, ‘Mixed Events’ are used as the random baseline reference, since Eq. 6 is only an
(excellent) approximation and the deviation of the data from the random baseline is very very
small. It is important to note that the Mixed Events must use exactly the same n distribution
as the data and match the inclusive 〈pT 〉 to high precision 5 since 〈MpT 〉 = 〈pT 〉 ≡ µ.

4 How to quantify the non-random effect?

4.1 Moments—So far, only Variance or Standard Deviation

The very small if any non-random effect in Fig. 1 can be quantified simply in terms of the
difference between the variances or standard deviations of the data and the random baseline:
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Figure 1: top left: Gamma Distribution for MpT (light line) compared to Gaussian with same 〈pT 〉 and σMpT

(darker line) for NA49 measurement. bottom left: Eq. 6 with PHENIX Au+Au central (top 5%) data. right:
PHENIX Au+Au data for ∆Φ = 1.02, |η| < 0.35 vs centrality. The dotted curves are mixed event distributions.

where for the random case σ2
x̄ = σ2

x/n. Groups argue over whether the variance or standard
deviation is better, however for small effects, these measures are equivalent:

∆σ2

σ2
= 2

∆σ

σ
= 2F . (8)

In terms of F , the fractional difference of the data
and random standard deviations, the PHENIX re-
sults from Fig. 1 for centralities 0–5% (〈n〉 = 59.6),
0–10% (53.9), 10–20% (36.6) and 20–30% (25.0) are
F = 0.019 ± 0.021, 0.020 ± 0.025, 0.021 ± 0.022,
0.018±0.030 respectively, very small indeed, where
the error is dominantly systematic. Note that F
is independent of centrality, an effect also observed
by STAR 6 (Fig. 2), although for the same value of
〈n〉 the STAR preliminary result for F is 6 times
larger than PHENIX, possibly due to the larger
solid angle of the measurement in STAR (∆Φ = 2π,
|η| < 0.75). A starkly different dependence of F on
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Fig. 2: Star results for F vs n, assuming

σ2
〈pT 〉,stat/µ2 = 1/(np) = 1/2n, in which case

the label on the y axis is equal to F

〈n〉 is predicted for the case 7 of a temperature parameter T = 1/b which varies event-by-event
with mean and variance, 〈T 〉, σ2

T , clearly not observed by either PHENIX or STAR:

F =
p

2
(〈n〉 − 1)

σ2
T

〈T 〉2 . (9)

4.2 Two-Component Model for the MpT distribution

The event-by-event average is most useful to resolve the case of e.g. 2 classes of events with
different pT distributions of which only one component appears on any given event. We represent



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
4

10
5

 (GeV/c)
TpM

eventsN

Model A
∆T=50 MeV

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
4

10
5

 (GeV/c)
TpM

eventsN

Model A
∆T=150 MeV

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
4

10
5

 (GeV/c)
TpM

eventsN

Model B
∆T=20 MeV

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
4

10
5

 (GeV/c)
TpM

eventsN

Model B
∆T=80 MeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

10

10
2

10
3

10
4

 (GeV/c)
TpM

eventsN

Model A
∆T = 50 MeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

10

10
2

10
3

10
4

 (GeV/c)
TpM

eventsN

Model A
∆T = 150 MeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

10

10
2

10
3

10
4

 (GeV/c)
TpM

eventsN

Model B
∆T = 20 MeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

10

10
2

10
3

10
4

 (GeV/c)
TpM

eventsN

Model B
∆T = 80 MeV

Figure 3: left: Semi-inclusive pT distribution for data and models. right: Comparison of the PHENIX mixed
event distribution for 0–5% centrality from Fig. 1 (dotted) to the 2-component models (points).

the component semi-inclusive distributions as Gamma distributions:

fc(pT ) = qfΓ(pT , p1, b1) + (1 − q)fΓ(pT , p2, b2), (10)

where q and 1 − q are the probabilities for an event to have either component distribution. We
constrain the compound distribution to be as close to the observed semi-inclusive distribution
by constraining its mean µc and variance σ2

xc
to be equal to the observed semi-inclusive values

µ, σ2
x, i.e. 〈pT 〉 = µc = qµ1 + (1 − q)µ2 = µ and

σ2
xc

µ2
− σ2

x

µ2
= 0 = q[

µ2
1

µ2
(1 +

1
p1

)] + (1 − q)[
µ2

2

µ2
(1 +

1
p2

)] − (1 +
1
p
) . (11)

We consider two models with ∆T ≡ 1/b2 − 1/b1: Model A, where the two components have the
same µ1,2 and different σ1,2; Model B, with different µ1,2 same σ1,2. Eqs. 10,11 are sufficient to
produce compound semi-inclusive distributions which are indistinguishable from the observed
distribution (see Fig. 3) yet give MpT distributions which are obviously no longer simple Gamma
distributions. 95%-confidence limits for ∆T as a function of q are obtained by a likelihood-ratio
test with result: ∆T < 40 MeV (Model A), ∆T < 20 MeV (Model B), for q ∼ 0.2 − 0.8.
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