\relax \bibstyle{unsrt} \citation{Ah94} \citation{Thome} \citation{Thome} \citation{FW} \citation{Bj} \@writefile{toc}{\contentsline {section}{\numberline {1}$E_T$ and Multiplicity distributions at mid-rapidity}{1}} \citation{Ah94} \citation{Ba93} \citation{Ah94} \citation{Ba93} \citation{AbZ88} \citation{A8} \citation{mjt88} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}`Centrality' and percentiles of $E_T$ distributions}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Simple empirical models are instructive}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Top(t): E814/E877 $E_T$ spectra in a full-azimuth hadron calorimeter compared to E802/E866 full azimuth $E_T$ spectra in an EM calorimeter covering a smaller pseudorapidity interval. E802/E866 data include a central Au+Au spectrum defined by the 4 \%-ile of the distribution in a Zero Degree Calorimeter (ZCAL). The solid line on the E802/E866 Au+Au data is an empirical calculation (see text). Bottom(b): Measured energy emission in E802 full azimuth EM calorimeter covering $1.25\leq \eta \leq 2.44$ for $^{16}$O+Au and $^{16}$O+Cu reactions together with WPNM calculation; the individual components of the sum are also shown with the 1-fold and 16-fold p+Au convolutions emphasized. }}{3}} \newlabel{fig:agsET2_c}{{1}{3}} \citation{AbC95} \citation{apology,concumint} \citation{Akiba97} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Physics or acceptance?}{4}} \@writefile{toc}{\contentsline {section}{\numberline {2}The shapes of multiplicity distributions vs $\delta \eta $---`Intermittency'}{4}} \citation{Bialas90} \newlabel{eq:nbdfluc}{{1}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Multiplicity distributions measured in $^{16}$O+Cu central collisions as a function of the interval $\delta \eta $ (indicated), scaled by $$ on the interval, for the case when all 16 incident nucleons have interacted as determined by the ZCAL. }}{5}} \newlabel{fig:qm93a}{{2}{5}} \@writefile{toc}{\contentsline {section}{\numberline {3}The `Intermittency' Formalism}{5}} \newlabel{eq:Fqdef}{{2}{5}} \citation{Bialas90} \citation{Bialas90} \citation{AbC95} \citation{Mueller,apology,concumint} \newlabel{eq:F2}{{3}{6}} \newlabel{eq:2}{{4}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces `Log-Log' plot of $F_2(\delta \eta )$ for central (ZCAL) collisions of $^{16}$O+Cu from E802 `Intermittency' analysis together with power-law fit (solid points, solid line). The open points are $1/k(\delta \eta )$ from the NBD fits of Fig.\nobreakspace {}2\hbox {}; the dashed line is Eq.\nobreakspace {}7\hbox {}. }}{6}} \newlabel{fig:intplus}{{3}{6}} \citation{cuminfo} \citation{apology} \citation{Mueller} \citation{FW} \citation{apology,concumint} \@writefile{toc}{\contentsline {section}{\numberline {4}Normalized Factorial Moments and Correlation Functions}{7}} \newlabel{eq:K2def}{{5}{7}} \newlabel{eq:Rxi}{{6}{7}} \newlabel{eq:CS1}{{7}{7}} \@writefile{toc}{\contentsline {section}{\numberline {5}Systematics of Mid-rapidity $E_T$ distributions}{7}} \citation{AbC92,Ah94} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces $k(\delta \eta )$ as a function of the mean multiplicity in the interval, $\mu (\delta \eta )=dn/d\eta \times \delta \eta $ for several experiments: UA5 $\mathaccent "7016\relax {\rm p}$+p, NA22 p+p, EMC $\mu $-p, HRS $e^+\mskip -\thinmuskip +e^-$, E802 O+Cu central (and E802 corrected), NA35 S+S central. The dashed lines are fits to Eq.\nobreakspace {}7\hbox {}. }}{8}} \newlabel{fig:allkmu2}{{4}{8}} \citation{AbZ88,AbC92} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Top: E802 mid-rapidity $E_T$ distributions ($\Delta \phi =\pi $) for the interval $1.25\leq \eta \leq 2.50$. (Left) p+Au, O+Cu, O+Cu(ZCAL); (Right) previous data, plus Si+Au, Au+Au, Au+Au(ZCAL). Bottom: Central (ZCAL) $E_T$ distributions as a function of $\delta \eta $, normalized by $$ on the interval. O+Cu (left), Au+Au (right). }}{9}} \newlabel{fig:auau2}{{5}{9}} \@writefile{toc}{\contentsline {section}{\numberline {6}Is the WPNM preserved as a function of $\delta \eta $ ?}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces $E_T$ distributions for p+Au (left) and p+Be (right) as a function of decreasing $\delta \eta $ from top to bottom. Adjacent p+Au and p+Be plots have the same $\delta \eta $. }}{10}} \newlabel{fig:paube}{{6}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces WPNM calculations (lines) for the two smallest $\delta \eta $ intervals for (left) O+Cu, (right) Si+Au, Au+Au. Components are shown for O+Cu. Data shown are (left) p+Au, O+Cu, O+Cu (ZCAL); (right) same data plus Si+Au, Au+Au. }}{11}} \newlabel{fig:auau2f}{{7}{11}} \newlabel{eq:wpnm}{{8}{11}} \citation{AbC92} \newlabel{eq:w2}{{9}{12}} \newlabel{eq:gammadist}{{10}{12}} \@writefile{toc}{\contentsline {section}{\numberline {7}Comparison E802 of $dn/dy|_{\pi ^+}$ and $E_T$ in A+A collisions}{12}} \@writefile{toc}{\contentsline {section}{\numberline {8}CONCLUSIONS}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Comparison of E802 $dn/dy|_{\pi ^+}$ (left) to mid-rapidity $E_T$ (right) distritubions. }}{13}} \newlabel{fig:pivsET}{{8}{13}} \bibcite{Ah94}{1} \bibcite{Thome}{2} \bibcite{FW}{3} \bibcite{Bj}{4} \bibcite{Ba93}{5} \bibcite{AbZ88}{6} \bibcite{A8}{7} \bibcite{mjt88}{8} \bibcite{AbC95}{9} \bibcite{Mueller}{10} \bibcite{apology}{11} \citation{concumint} \bibcite{concumint}{12} \bibcite{Akiba97}{13} \bibcite{Bialas90}{14} \bibcite{cuminfo}{15} \citation{Mueller} \bibcite{AbC92}{16} \newlabel{Mueller}{{10}{14}} \newlabel{Bialas90}{{14}{14}}