Introduction to High p_T physics at RHIC

M. J. Tannenbaum BNL September 7, 2001

• Hard Scattering in p-p collisions was discovered at the CERN ISR in 1972 by the method of leading particles.

• A very large flux of high p_T pions was observed with a powerlaw tail which varied systematically with \sqrt{s} , the c.m. energy of the collision.

• The huge flux of high p_T particles proved that the partons of DIS strongly interacted with each other.

• Scaling arguments allowed the form of the force law between 'partons' to be determined but there was some early confusion caused by initial transverse momentum k_T which distorted the spectra.

• Further ISR measurements utilizing inclusive single or pairs of hadrons established that high transverse momentum particles are produced from states with two roughly back-to-back jets which are the result of scattering of constituents of the nucleons as described by Quantum Chromodynamics.

• In the region of hard scattering $(p_T > 2 \text{ GeV/c})$ scaling from p-p to nuclear collisions should be simply proportional to the relative number of point-like encounters, corresponding to A (p+A), $A \times B$ (A+B) for the total rate and to T_{AB} , the overlap integral of the nuclear profile functions, as a function of centrality.

• In stark contrast to results at lower c.m. energies, measurements of high $p_T \pi^0$ and $(h^+ + h^-)/2$ production at $\sqrt{s_{NN}} = 130$ GeV from PHENIX at RHIC show a huge suppression compared to point-like scaling...

Invariant cross section for non-identified charged-averaged hadron production at 90° in the c.m. system as a function of the transverse momentum p_T tablulated by CDF for a range of C.M. energies \sqrt{s} . There is an exponential tail (e^{-6p_T}) at low p_T , which depends very little on \sqrt{s} . This is the soft physics region, where the hadrons are fragments of 'beam jets'. At higher p_T there is a power-law tail which depends very strongly on \sqrt{s} . This is the hard-scattering region, where the hadrons are fragments of the high p_T QCD jets from constituent-scattering. My hope is that the QGP causes the high p_T quarks to lose all their energy and stop, so that the high p_T tail will 'vanish' for central Au+Au collisions

In RHI central collisions, leading particles are the only way to find jets because in one unit of Δr there is $\pi \times \frac{1}{2\pi} \frac{dE_T}{d\eta} \sim 375$ GeV !!!. Miklos Gyulassy's question at DNP98:

"Can an OLD TIMER enlighten me: Why THEY never found JETS at FERMILAB (fixed target)?"

A historical review for the younger folks!

Bjorken Scaling in Deeply Inelastic Scattering and the Parton Model—1968

 \heartsuit The discovery that the DIS structure function

$$F_2(Q^2,\nu) = F_2(\frac{Q^2}{\nu})$$
 (1)

"SCALED" i.e just depended on the ratio

$$x = \frac{Q^2}{2M\nu} \tag{2}$$

independently of Q^2 (~ $1/r^2$)

 \heartsuit as originally suggested by **Bjorken**

 \heartsuit Led to the concept of a proton composed of point-like **partons**.

 \Box The probability for a parton to carry a fraction x of the proton's momentum is measured by $F_2(x)$

BBK 1971

S. M. Berman, J. D. Bjorken and J. B. Kogut Phys. Rev. **D4** 3388 (1971)

Inclusive Processes at High Transverse Momentum

 \heartsuit BBK calculate the inclusive reaction

$$A + B \to C + X \tag{3}$$

when particle C has $p_T \gg 1 \text{ GeV/c}$

□ The charged partons of DIS must scatter electromagnetically, "which may be viewed as a lower bound on the real cross section at large p_T .

Figure 1: Secondary-particle distributions as calculated in the parton model and compared to diffractive backgrounds for typical NAL conditions.

BBK 1971—continued The ERA of SCALING

 \heartsuit BBK propose a **General Form** for high p_T cross sections, for the **EM** scattering, which must exist:

$$E\frac{d^{3}\sigma}{dp^{3}} = \frac{4\pi\alpha^{2}}{p_{T}^{4}}\mathcal{F}(x_{1} = \frac{-\hat{u}}{\hat{s}}, x_{2} = \frac{-\hat{t}}{\hat{s}})$$
(4)

 \heartsuit The two factors are a $1/p_T^4$ term, characteristic of single photon exchange and a form factor \mathcal{F}

 \heartsuit Note that $x_{1,2}$ are not x_{BJ}

 \Box The point is that \mathcal{F} scales, i.e. is only a function of the ratio of momenta.

 \heartsuit Vector (J = 1) Gluon exchange gives the same form as Eq. 4 but much larger.

ISR Data, Notably CCR 1972-73 F. W. Büsser, et al., Phys. Lett. 46B 471 (1973) Cern Columbia Rockefeller

 $\heartsuit e^{-6p_T}$ breaks to a power law at high p_T with characteristic \sqrt{s} dependence.

 \heartsuit Large rate indicates that partons interact strongly ($\gg EM$) with each other, **but**, "Indeed, the possibility of a break in the steep exponential slope observed at low p_T was anticipated by Berman, Bjorken and Kogut. However, the electromagnetic form they predict, $p_{\perp}^{-4}F(p_{\perp}/\sqrt{s})$, is not observed in our experiment. On the other hand, a constituent exchange model proposed by Blankenbacler, Brodsky and Gunion, and extended by others, does give an excellent account of the data. \heartsuit The data fit $p_{\perp}^{-n}F(p_{\perp}/\sqrt{s})$, with $n \simeq 8$

THE CCR DATA—**Discovery of "High** p_T " F. W. Büsser, et al., Phys. Lett. **46B** 471 (1973)

Figure 2: Top(t): CCR transverse momentum dependence of the invariant cross section at five center of mass energies. Bottom(b): The above data multiplied by p_{\perp}^{n} , using the best fit value of $n = 8.24 \pm 0.05$, with $F = Ae^{-bx_{\perp}}$, plotted vs p_{\perp}/\sqrt{s} .

Constituent Interchange Model 1972

R. Blankenbecler, S. J. Brodsky, J. F. Gunion Phys. Lett. **42B** 461 (1972) Inclusive Processes at High Transverse Momentum

 \heartsuit Inspired by the *dramatic features* of pion inclusive reactions revealed by "the recent measurements at CERN ISR of single-particle inclusive scattering at 90° and large transverse momentum", Blankenbecler, Brodsky and Gunion propose a new general scaling form:

$$E\frac{d^3\sigma}{dp^3} = \frac{1}{p_T^n} F(\frac{p_T}{\sqrt{s}}) \tag{5}$$

 $\heartsuit n$ gives the form of the force-law between constituents $\heartsuit n = 4$ for QED or Vector Gluon

 \heartsuit Perhaps more importantly, BBG predict n=8 for the case of quark-meson scattering by the exchange of a quark, **C.I.M.**, as apparently observed.

Figure 3: $p_{\perp}^{n} E d^{3} \sigma / dp^{3}$ vs x_{T} for π^{+} and π^{-} production at 90° in the c.m. system for three FNAL incident energies. Best fit $n \sim 8$, $F(x_{T}) = (1 - x_{T})^{m}$ shown.

First prediction using 'QCD' 1975

R. F. Cahalan, K. A. Geer, J. Kogut and Leonard Susskind Phys. Rev. **D11**, 1199 (1975)

Asymptotic freedom and the "absence" of vector-gluon exchange in wide-angle hadronic collisions

- \heartsuit Abstract: The naive, pointlike parton model of Berman, Bjorken and Kogut is generalized to scale-invariant and asymptotically free field theories. The asymptotically free field generalization is studied in detail. Although such theories contain vector fields, single vector-gluon exchange contributes insignificantly to wide-angle hadronic collisions. This follows from (1) the smallness of the invariant charge at small distances and (2) the *breakdown of naive scaling* in these theories. These effects should explain the apparent absence of vector exchange in inclusive and exclusive hadronic collisions at large momentum transfers observed at Fermilab and at the CERN ISR.
- ◇ An interesting Acknowledgement: ... Two of us (J. K. and L. S. also thank S. Brodsky for *emphasizing to us <u>repeatedly</u>* that the present data on wide-angle hadron scattering *show no evidence for vector exchange.*

 \heartsuit Nobody's perfect, they get *one* thing right! They introduce the "effective index" $n(x_T, \sqrt{s})$ to account for 'scale breaking':

$$E\frac{d^{3}\sigma}{dp^{3}} = \frac{1}{p_{T}^{n(x_{T},\sqrt{s})}}F(\frac{p_{T}}{\sqrt{s}}) = \frac{1}{\sqrt{s}^{n(x_{T},\sqrt{s})}}G(\frac{p_{T}}{\sqrt{s}})$$
(6)

CCOR 1978—Discovery of "REALLY High $p_T > 7 \text{ GeV/c"}$

A. L. S. Angelis, et al., Phys. Lett. **79B**, 505 (1978) See also, A. G. Clark, et al., Phys. Lett. **74B**, 267 (1978)

Figure 4: CCOR transverse momentum dependence of the invariant cross section for $p + p \rightarrow \pi^0 + X$ at three center of mass energies. Cross sections are offset by the factors noted. Open points and dashed fit are from a previous experiment, CCRS, F. W. Büsser, et al., Nucl. Phys. **B106**, 1 (1976).

 $\heartsuit Ed^3\sigma/dp^3 \simeq p_T^{-5.1\pm0.4}(1-x_T)^{12.1\pm0.6}$, for 7.5 $\leq p_T \leq 14.0$ GeV/c, 53.1 $\leq \sqrt{s} \leq 62.4$ GeV (including *all* systematic errors).

Figure 5: Top(t): CCOR invariant cross section vs $x_T = 2p_T/\sqrt{s}$. Bottom(b): $n(x_T, \sqrt{s})$ derived from the combinations indicated. The systematic normalization at $\sqrt{s} = 30.6$ has been added in quadrature. Note: the absolute scale uncertainty cancels!

Difficulties with Absolute Cross Sections Due to scale, normalization uncertainties

(How does RQMD do it?) Athens Brookhaven CERN Syracuse Collaboration C. Kourkoumelis, et al., Phys. Lett. **84B**, 271 (1979)

Figure 6: Top(t): Invariant cross section for π^0 inclusive for several ISR experiments, compiled by ABCS Collaboration. Bottom(b): $n(x_T, \sqrt{s})$ from ABCS 52.7, 62.4 data only. There is an additional common systematic error of ± 0.7 in n.

The Answer to Miklos

 \heartsuit Hard-scattering was visible both at ISR and FNAL (Fixed Target) energies by single particle inclusive at large $p_T \ge 2-3$ GeV/c.

 \heartsuit Scaling and dimensional arguments for plotting data revealed the systematics and underlying physics.

 \heartsuit The theorists had the basic underlying physics correct; but many (inconvenient) details remained to be worked out, several by experiment.

 $\heartsuit k_T$, the transverse momentum imbalance of outgoing partons (due to initial state radiation), was discovered by experiment.

 \heartsuit The first modern QCD calculations and predictions for high p_T single particle inclusive cross sections, including non-scaling and initial state radiation was done in 1978, by Jeff Owens.

J. F. Owens, E. Reya, M. Glück Phys. Rev. **D18**, 1501 (1978)

Detailed quantum-chromodynamic predictions for high- p_T processes

J. F. Owens and J. D. Kimel Phys. Rev. **D18**, 3313 (1978)

Parton-transverse-momentum effects and the quantum-chromodynamic description of high- p_T processes

 \heartsuit Jets in 4π Calorimeters at ISR energies or lower invisible below $\sqrt{\hat{s}} \sim E_T \leq 25$ GeV.

 \heartsuit A 'phase change' in belief in Jets with UA2 event at 1982 ICHEP in Paris.

QCD

Cross Section in p-p collisions c.m. energy \sqrt{s}

The overall p-p reaction cross section is the sum over constituent reactions

 $a + b \rightarrow c + d$

 $a(x_1), b(x_2)$, are structure functions, the differential probabilities for constituents a and b to carry momentum fractions x_1 and x_2 of their respective protons, e.g. $u(x_1)$,

$$\frac{d^3\sigma}{dx_1 dx_2 d\cos\theta^*} = \frac{1}{s} \sum_{ab} a(x_1) b(x_2) \frac{\pi \alpha_s^2(Q^2)}{2x_1 x_2} \Sigma^{ab}(\cos\theta^*)$$

 $\Sigma^{ab}(\cos \theta^*)$, the characteristic subprocess angular distributions and $\alpha_s(Q^2) = \frac{12\pi}{25} \ln(Q^2/\Lambda^2)$ are predicted by QCD

For fixed $x_1, x_2, \sigma \propto 1/s$ —RHIC is optimum

SPIN QCD

The cross-section asymmetry is the sum over constituent reactions

$$A_{LL}(x_1, x_2, \cos \theta^*) = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

$$= \sum_{ab} \frac{\Delta a}{a} (x_1) \frac{\Delta b}{b} (x_2) \hat{a}_{LL}(a+b \to c+d)$$
(8)

where the helicity asymmetry of a(x) for a polarized proton is $\Delta a(x) = a^+(x) - a^-(x)$

The spin asymmetry of the subprocess $\hat{a}_{LL}(a + b \rightarrow c + d)$ is a fundamental prediction of QCD which has never been verified—to my knowledge. quantity. Evidently, for the case of constituent scattering, the Mandelstam invariants \hat{s} , \hat{t} and \hat{u} have a clear definition in terms of the c.m. scattering angle:

$$\hat{t} = -\hat{s} \; rac{(1-\cos heta^*)}{2} \qquad ext{and} \qquad \hat{u} = -\hat{s} \; rac{(1+\cos heta^*)}{2} \qquad . \tag{9}$$

The transverse momentum of a scattered constituent is:

$$p_T = p_T^* = \frac{\sqrt{\hat{s}}}{2} \sin \theta^* \qquad . \tag{10}$$

A naive experimentalist would think of $Q^2 = -\hat{t}$ for a scattering subprocess and $Q^2 = -\hat{s}$ for a Compton or annihilation subprocess.

Fig. 2. Characteristic QCD Subprocess angular distributions: (a) scattering; (b) spin asymmetry

7.2. The cross section in p - p collisions

The cross section for hard processes in p-p collisions at c.m. energy \sqrt{s} is taken to be a sum over the constituent reactions. The c.m. system for the constituent scattering is not generally the same as the p-p c.m. system since the constituents have momentum fractions x_1 and x_2 of their respective protons. Thus in the p-pc.m. system, the constituent c.m. system has rapidity, $\hat{y} = \frac{1}{2} \ln \frac{x_1}{x_2}$, and invariant mass-squared, $\hat{s} = x_1 x_2 s$, where

$$x_1 = \sqrt{\frac{\hat{s}}{s}} e^{\hat{y}} \qquad x_2 = \sqrt{\frac{\hat{s}}{s}} e^{-\hat{y}} \qquad .$$
 (11)

This description and theory is now an important component of

The Standard Model

Incredibly, at Snowmass in July 1982, many (if not most) people were skeptical!

The International HEP conference in Paris, three weeks later, changed everything

Int'l HEP Conference, Paris, 1982 The UA2 Two-Jet Event

Int'l HEP Conference, Paris, 1982— First measurement of QCD subprocess angular distributions

Angular distributions of pairs of nearly back-to-back π^0 as a function of the invariant mass $M_{\pi\pi}$ of the pair. The net P_t of the pion pair is restricted as indicated on the figure and the net rapidity of the di-pion system is restricted to $|Y_{\pi\pi}| < 0.35$. The distribution plotted is the polar angular distribution of the dipion axis in the frame with zero net longitudinal momentum. The important feature of the analysis in these variables, which are more typically used for lepton pairs, is that the di-pion angular distribution at fixed mass corresponds closely to the distribution of scattered partons at fixed \hat{s} , thus the data and QCD prediction at the parton level can be directly compared without recourse to a Monte Carlo. [see Nucl Phys **B209** (1982) 284].

How Everything You Want To Know about JETS can be done in PHENIX with leading particles in each arm c.f. CCOR—Same Data Set

Two particle correlation in azimuth of charged particles relative to a triggering neutral with transverse momentum $p_{T_t} \ge 7.0 \text{ GeV/c}$ which defines the zero of azimuth, $\phi = 0$. Charged particles with $|\eta| < 0.7$ in the same 'arm' as the trigger are on the left and opposite 'arm' to the trigger on the right. As the p_T of the observed charged particle increases, the width of the away side peak (plots on the right) narrows. This effect clearly shows that the jets **are not collinear in azimuth** (they have a net transverse momentum k_T . If there were only fragmentation transverse momentum, then $p_T \times \Delta \phi$ would remain constant which would equal to $\langle j_T \rangle$, the mean transverse momentum of fragmentation. [See PL 97B (1980) 163 for details]

Measurement of fragmentation function with the same data

Distribution in x_E for a charged pion (or π^0) observed roughly back-to-back to a triggering π^0 of transverse momentum p_{T_t} , where both pions have $|\eta| < 0.5$ in the c.m. system. x_E is the ratio of the component of the p_T of the second pion, opposite in azimuth to the triggering pion, divided by p_{T_t} . **Exercise** for students: What do you have to know about the leading trigger particle to convert from $e^{-5.3x_E}$ to the jet fragmentation variable $z [e^{-6z}]$.

k_T Results from this Data

Figure 7: (a) $\langle |k_{Ty}| \rangle$ and $\sqrt{\langle k_T^2 \rangle}$ as a function of p_{Ttrig} for three different \sqrt{s} values, obtained from back-back correlations. (b) The same using events where the sum of charged paricle transverse momenta on the away side balances p_{Ttrig} [see Phys Lett **97B** (1980) 163].

Hard Scattering is Point-Like From DIS

E. Gabathuler, Total cross-section

Fig. 14. The A dependence of the inelastic muon cross-section as presented by Tannenbaum (see discussion).

AGS $\mu - A$ scattering data, from E. Gabathuler's talk, [Proc. 6th Int. Symposium on Electron and Photon Interactions at High Energies, Bonn (1973)].

 \heartsuit DIS is pointlike $A^{1.00}$ even at modest q^2 —no shadowing. \heartsuit Photoproduction is shadowed— $A^{0.91}$

High p_T in A+B— T_{AB} Scaling

Hard-scattering is a point-like process, with excellent PQCD predictions $\sim 10\%$ for p - p and $\bar{p} - p$ collisions. For p+A or A+A collisions the cross sections should scale by the number of point sources, A for p+A or A^2 for A+A.

As a function of impact parameter, the profile function for a nucleus A

is the number of nucleons per unit area along a direction z at a point from the center of the nucleus represented by a 2-d vector \vec{s} , where z is perpendicular to \vec{s} . For an interaction of nucleus A with nucleus B at impact parameter \vec{b} , the nuclear overlap integral $T_{AB}(\vec{b})$ is defined:

$$T_{AB}(\vec{b}) = \int d^2 s T_A(\vec{s}) T_B(\vec{b} - \vec{s})$$

where $d^2s = 2\pi s ds$ is the 2-dimensional area element. Simply:

$$T_{AB}(\vec{b}) = N_{coll}(\vec{b},\sigma)/\sigma$$

More precisely, for a certain fraction f of the nuclear interaction cross section for A+B collisions, the semi-inclusive yield is related to the p - p inclusive cross section:

$$\frac{1}{N_f} \frac{d^3 N_f^{A+A}}{p_T dp_T dy d\phi} = \frac{d^3 \sigma^{p-p}}{p_T dp_T dy d\phi} \times \langle T_{AB} \rangle_f \cong \frac{d^3 \sigma^{p-p}}{p_T dp_T dy d\phi} \times \frac{\langle N_{coll}(\sigma_{nn}) \rangle_f}{\sigma_{nn}}$$

What Really Happens in Hadron Scattering

The Anomalous Nuclear Enhancement aka the 'Cronin Effect' The unpleasant Nuclear Effect

Due to Multiple Scattering of the initial Nucleons (Constituents?) Now called k_T broadening.

But don't forget 'shadowing' of the Structure Functions in Nuclei For latest info see E. Wang and X.-N. Wang nucl-th/0104031

CERN Pb+Pb $\sqrt{s_{NN}} = 17.2$ GeV

Figure 24: From Wang and Wang nucl-th/0104031

What happens at RHIC—something new! High $p_T \pi^0$ —PHENIX Au+Au $\sqrt{s_{NN}}$ =130 GeV

π^0 Cent. and Periph.

PHENIX central and peripheral π^0 semi-inclusive yield, scaled by $\langle T_{AB} \rangle$ for the centrality class= $\langle N_{coll}(40\text{mb}) \rangle / 40\text{mb}$

 \heartsuit Central π^0 yield is BELOW the point-like prediction!!

A New and Interesting High p_T Nuclear Effect PHENIX π^0 and $(h^+ + h^-)/2$ Central cf. UA1 fit A defecit for $p_T > 2$ GeV/c—never seen previously!!!

Is this the 'jet quenching' in hot matter predicted by R. Baier, Yu. L. Dokshitzer, A. H. Mueller, S. Peigné and D.Schiff, Nucl. Phys. **B483**, 291 (1997) ?. Too early to say, needs lots more systematic investigation! This year's run at RHIC is presently underway with Au+Au (300 μ b⁻¹) and (polarized) p-p (3.5 pb⁻¹) collisions planned at $\sqrt{s_{NN}} = 200$ GeV. Should go to up to $p_T \sim 20$ GeV/c with good p-p comparison if all goes well.

It's another new effect-

different from p - p: Flow?

4

N.B

 π^0

and

 h^+

+h

are

different!

EMCal calibration is consistent within 2%

HENIX

Slight change of π^0 mass with Centrality is Corrected Central Collisions

High $p_T \pi^0$ —PHENIX

PbSc and PbGl Calorimeters Agree $(h^+ + h^-)/2$ similar but different in detail

Central Collisions show a deficit compared to pointlike scaling for both π^0 and non-identified charged particles. This has never been seen before in p+A or A+A collisions. At lower energies the yield is enhanced over pointlike scaling, known as 'the Cronin effect'

Inconlusive, this round—Wait till next year!

Why is the Cronin Effect 'Unpleasant'?

 p_T spectra are very interesting in p - p collisions but before RHIC were 'tedious' in nuclei The shapes of the spectra barely change from p - p to d - d to $\alpha - \alpha$ to Au+Au e.g ISR $\sqrt{s_{NN}} = 31$ GeV.

Figure 33: From CCOR Collab, A. L. S. Angelis, et al. PLB185, 213 (1987)

E_T Distributions have Much More Interesting Effects in collisions of Nuclei

Schematic Nuclear Collision Geometry

Figure 34: Schematic Nuclear Collision Geometry from Star-Yale

X. N. Wang, Phys. Rev. C61, 064910 (2000), Phys. Rev. C63, 054902 (2001) also

http://www.-hpc.lbl.gov/

PHENIX qm01 π^0 c.f. P. Levai, M. Gyulassy et al. π^0 Cent. and Periph. Cent/Perip. Norm by N_{coll}

P. Levai, G. Papp, G. Fai, M. Gyulassy, G. G. Barnafoldi, I. Vitev, Y. Zhang, qm01, nucl-th/0104035

A Similar Proposal For RHIC X-N. Wang and Z. Huang PRC <u>55</u>, 3047 (1997)

The differential p_T spectrum of charged particles from the fragmentation of a photontagged jet with $E_T^{\gamma}=10$, 15 GeV and the underlying background in central Au+Au collisions at $\sqrt{s} = 200$ GeV. The direct photon is restricted to $|y| \leq \Delta y/2 = 0.5$. Charged particles are limited to the same rapidity range and in the opposite direction of the photon, $|\phi - \phi_{\gamma} - \pi| \leq \Delta \phi/2 = 1.0$. Solid lines are HIJING simulation of 20K events.

A calculation of charged particles in roughly PHENIX solid angle, opposite from a detected γ or π^0 . The γ are direct constituents from the reaction, but the π^0 are the leading fragments of jets. In Au+Au collisions, the key problem is to cope with "background", which is just the p_T spectrum of inclusive charged particles randomly opposite any particle due to the large value of $dn^{\pm}/d\eta \sim 1000$ —the same problem that makes direct detection of jets difficult. Interestingly, at **RHIC**, we go back to measurements of jets and di-jets with leading particles, using techniques from the discovery of hard-scattering in hadron collisons at the CERN ISR