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x-Q? acceptance vs energy
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electron and proton angles vs Q2
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electron and proton angles vs Q2

electron proton
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electron and proton angles vs Q2
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electron and proton angles vs Q2
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electron and proton angles vs Q2
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electron and proton angles vs Q2
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How to measure coherent diffraction in et+A ?

do

- — im0 (7 A = VA) xx a[G sz, Q%))
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How to measure coherent diffraction in et+A ?

do
d
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t|t o(V*A = VA) xai[Galz, Q%))

® Coherent diffraction ==

low t

- Ca, with breakup
-—-— Ca, no breakup 1

1 1 | | | 1l 1 1 1 | 1 1
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How to measure coherent diffraction in et+A ?

do <10y 4y — ' Ca, with breakup -
oy A= VA)  a2[Gale, QP F AT g
® Coherent diffraction == low t
® Can measure the nucleus if it is
separated from the beam in Si (Roman
Pot) “beamline” detectors
I T T R AR BT B
0 0.05 0.1 015 0.2 025 0.3
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How to measure coherent diffraction in et+A ?
do
d

- Ca, with breakup
-—-— Ca, no breakup 1

t|t o(V*A = VA) xai[Galz, Q%))

® Coherent diffraction == low t

® Can measure the nucleus if it is

separated from the beam in Si (Roman
Pot) “beamline” detectors

= PTmin =~ PAemin
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How to measure coherent diffraction in et+A ?
do
d

Tl A = VA) x 02[Gale, P F A g
® Coherent diffraction == low t

® Can measure the nucleus if it is
separated from the beam in Si (Roman
Pot) “beamline” detectors

= PTmin =~ PAemin

» For beam energies = |00 GeV/n
and Omin = 0.08 mrad:
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How to measure coherent diffraction in et+A ?
do
d

Tl A = VA) x 02[Gale, P F A g
® Coherent diffraction == low t

® Can measure the nucleus if it is
separated from the beam in Si (Roman
Pot) “beamline” detectors

= PTmin =~ PAemin

» For beam energies = |00 GeV/n
and Omin = 0.08 mrad:

® These are large momentum kicks, >>
the binding energy (~ 8 MeV)
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How to measure coherent diffraction in et+A ?

do f \
_ |t:O (ry*A N VA) X Oég[GA (ZC, Qz)]Q %‘m Silicon detector

dt Roman Pot Bellows
® Coherent diffraction == low t -~
-— ) D
® Can measure the nucleus if it is % Proton beam line

separated from the beam in Si (Roman
Pot) “beamline” detectors B)

- D1 ~ DABn ( e

» For beam energies = |00 GeV/n
and Omin = 0.08 mrad: ” %

{ B
® These are large momentum kicks, >> f%
the binding energy (~ 8 MeV)

\_ Z-Y view X-Yview
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How to measure coherent diffraction in et+A ?

do §
Jimo(y" A = VA) < a2[Ga(x, Q)]
® Coherent diffraction == low t species (A) pr™n (GeVic)
® Can measure the nucleus if it is d (2) 0.02
separated from the beam in Si (Roman
Pot) “beamline” detectors Si (28) 0.22
- I:).I_min ~ PAemin Cu (63) 051
» For beam energies = |00 GeV/n In (I'15) 0.92
and emin = 0.08 mrad: Au (|97) | 58
® These are large momentum kicks, >> U (238) 19
the binding energy (~ 8 MeV)
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How to measure coherent diffraction in e+A ?

do §
Jimo(y" A = VA) < a2[Ga(x, Q)]
® Coherent diffraction == low t species (A) pr™n (GeVic)
® Can measure the nucleus if it is d (2) 0.02
separated from the beam in Si (Roman
Pot) “beamline” detectors Si (28) 0.22
- I:).I_min ~ PAemin Cu (63) 051
» For beam energies = |00 GeV/n In (I'15) 0.92
and emin = 0.08 mrad: Au (|97) | 58
® These are large momentum kicks, >> U (238) 19
the binding energy (~ 8 MeV)

For large A, nucleus cannot be separated from beam
without breaking up
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Diffractive Physics in et+A

‘Standard DIS event’ £

e (ku /)

Activity 1n proton direction
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Diffractive Physics in et+A

Diffractive event
y

electron

proton, nuclei

e HERA/ep: 15% of all events are hard diffractive
e Diffractive cross-section O /0y, 1N €+A ?

= Predictions: ~25-40%"7?

Curves: Kugeratski, Goncalves,
Navarra, EPJ C46, 413
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Activity 1n proton direction
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Diffractive Physics in et+A

Diffractive event 4
k' _
K eleciron /
q .
M, |
. I

) momentum transfer:
proton, nuclei P’ f= (P-P’)2

e HERA/ep: 15% of all events are hard diffractive
e Diffractive cross-section O /0y, 1N €+A ?

= Predictions: ~25-40%"7?
e ook inside the “Pomeron”

Activity 1n proton direction

= Diffractive structure functions
= Exclusive Diffractive vector meson production: do/dz ~ [xG(x,Q?)]? !!
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Diffractive Physics |

Diffractive event

k’
electron /
k >

p

proton, nuclei

P’

momentum transfer:
t=(P-P’)

e HERA/ep: 15% of all events are hard diffractive

Curves: Kugeratski, Goncalves,|

Navarra, EPJ C46, 413

e Diffractive cross-section O /0y, 1N €+A ?

= Predictions: ~25-40%?
e [ 00k 1nside the “Pomeron”

= Diffractive structure functions

in etA

| Illlllll | llllllll

- EIC (10+100 GeV)
|Ldt = 5/A, fo" and 5/A, fbo

LI lllllll

L

—

= Exclusive Diffractive vector meson production: do/dz ~ [xG(x,Q?)]? !!

e Distinguish between linear evolution and saturation models
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Diffractive Physics in e+ A
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Diffractive Physics at an EIC

® Significant coverage in x-Q?
Generated 10° e+p events using RAPGAP
for a variety of proposed EIC energies

w = e+p: RAPGAP
; 2+100 GeV

= increases by ~ order of
magnitude over EIC energies

Q? (GeV?)

10?

® Plotted the distribution of the :
Most Forward Particle in the event «t
for DIS and Diffractive events 5

10

= significant gap between two _
classes of events N S

® Reproduce the “ZEUS” plot?

° Imp.ortant - plot the efficiency vs o RAPGAP
purity - 30+100 GeV

10 |

10°

10

Q? (GeV?)

10° 3
10?

10

= Can place a cut in rapidity
for ~90% efficiency and

~90% purity !!

BROOKHELAEN 7
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Diffractive Physics at an EIC

® Significant coverage in x-Q?

Generated 10° e+p events using RAPGAP

= increases by ~ order of ! ,
for a variety of proposed EIC energies

magnitude over EIC energies

® Plotted the distribution of the ? v G
Most Forward Particle in the event ., o100 Gov “DIS
0.1 20+100 GeV - DIS

30+100 GeV - DIS

for DIS and Diffractive events D | 30100 o

-------- 5+100 GeV - Diff
-------- 10+100 GeV - Diff

= significant gap between two o.o8F || 20+100 GeV - DIf
- 1 e 30+100 GeV - Diff
classes of events

® Reproduce the “ZEUS” plot? 0-067

® Important - plot the efficiency vs
purity

= Can place a cut in rapidity 0o
for ~90% efficiency and |

0.04

N I |l.'r-.}":i-:"r'-l:-;::-'l'-.L| I

~90% purity I 0g . 2 0 2 4 6 8
rapidity
BROOKHIVEN 7
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Diffractive Physics at an EIC

® Significant coverage in x-Q?

Generated 10° e+p events using RAPGAP

= increases by ~ order of ! .
for a variety of proposed EIC energies

magnitude over EIC energies

® Plotted the distribution of the 107 F o+p: RAPGAP: MFP in Event

— 30+100 GeV

Most Forward Particle in the event [  —oisoir-soi0
for DIS and Diffractive events 10°F

= significant gap between two
classes of events

® Reproduce the “ZEUS” plot!? 1o-4é—

® |mportant - plot the efficiency vs ;s|
purity :

= Can place a cut in rapidity " ¢
for ~90% efficiency and ;[
~90% purity !! 8 6 4 2 0 2 4 6 8
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Diffractive Physics at an EIC

® Significant coverage in x-Q?

= increases by ~ order of
magnitude over EIC energies

® Plotted the distribution of the
Most Forward Particle in the event
for DIS and Diffractive events

= significant gap between two

classes of events

® Reproduce the “ZEUS” plot?

® Important - plot the efficiency vs

purity

= Can place a cut in rapidity °?
for ~90% efficiency and |

~90% purity !!
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Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events

}
| e L

--------------------------------------
---

e+p- RAPGAP
----- 2+100 GeV - Purity
----- 5+100 GeV - Purity
----- 10+100 GeV - Purity
----- 204100 GeV - Purity
----- 30+100 GeV - Purity
—— 2+100 GeV - Efficiency
—— 5+100 GeV - Efficiency
—— 104100 GeV - Efficiency
—— 20+100 GeV - Efficiency
—— 30+100 GeV - Efficiency

o
u

-6

4 6

4 2 0

8

rapidity
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Diffractive Physics at an EIC - Acceptance

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events

1 -
e+p: RAPGAP
- 2+100 GeV
0.8— E ====- Purity - 1:1
i ' -e-- Purity - 66:34
i ----- Purity - 90:10
L E —— Efficiency - 1:1
06 - é —— Efficiency - 66:34
| é —— Efficiency - 90:10
0.4
0.2
O ||||L-4..-'§';':||;|||||||| |E||||||||||||
-8 -6 -4 -2 0 2 4 6 8
rapidity
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Diffractive Physics at an EIC - Acceptance

® /EUS had a gap in detector
coverage (acceptance) of ~ 3 units.

® Studied this effect in the MFP

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events

. . . . 1
distribution for EIC energies: _
e+p: RAPGAP
- 2+100 GeV
0.8 : ----- Purity - 1:1
. - - - Purity - 66:34
i ' ----- Purity - 90:10
L é —— Efficiency - 1:1
06 — é —— Efficiency - 66:34
| é —— Efficiency - 90:10
0.4
0.2
O ||||L_dt-:.:'ili||;|||||||| I§|III|III|III
-8 -6 -4 -2 0) 2 4 6 8
rapidity
BROOKHIUEN 8

NATIONAL LABORATORY



Diffractive Physics at an EIC - Acceptance

® /EUS had a gap in detector
coverage (acceptance) of ~ 3 units.

® Studied this effect in the MFP

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events

distribution for EIC energies: _
® Keeping the 90% Purity level has the oal
following effect: -
0.6 — Efficiency - 66:34
0.4
0.2
O_I [ | L-QL{.EIIEL:EI' IEI ] | L1 1 | ] I;' L1 | | L1 1 | L1 1
-8 -6 -4 -2 0 2 4 6 8
rapidity
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Diffractive Physics at an EIC - Acceptance

® /EUS had a gap in detector
coverage (acceptance) of ~ 3 units.

® Studied this effect in the MFP

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events

o o o o 1 — __‘E_.-.-a--"_-.-.:-"-- =y
distribution for EIC energies: _
® Keeping the 90% Purity level has the 1
following effect: :
® | unit cut in rapidity oal e
= Efficiency falls by factor of 2, rapidity | I
moves 2 units to right ol
0.2
O_III|I‘GDl:-E‘:—I:iIII|EIII|I |||II|III|III
8 -6 -4 2 0 2 4 6 8
rapidity
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Diffractive Physics at an EIC - Acceptance

® /EUS had a gap in detector
coverage (acceptance) of ~ 3 units.

® Studied this effect in the MFP

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events

distribution for EIC energies: ki
® Keeping the 90% Purity level has the oal 5 oo
following effect: -
e | unit cut in rapidity el L
= Efficiency falls by factor of 2, rapidity | T
moves 2 units to right oal
® 2 unit cut in rapidity '
= Efficiency falls by a factor of 4, 000
rapidity cut moves farther to right !! |
O_|||||||§-:'l:;rlll|llil|lI|;II|III|III
8 -6 -4 -2 0 2 4 6 8
rapidity
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Diffractive Physics at an EIC - Acceptance

® /EUS had a gap in detector
coverage (acceptance) of ~ 3 units.

® Studied this effect in the MFP
distribution for EIC energies:

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events

e+p: RAPGAP

2+100 GeV

® Keeping the 90% Purity level has the
following effect:

8— iiili i ===+ Purity - 1:1
I - - -- Purity - 66:34
---- Purity - 90:10
® | unit cut in rapidity ‘ T e
06 - EE E —— Efficiency - 66:34
L EE E —— Efficiency - 90:10

= Efficiency falls by factor of 2, rapidity
moves 2 units to right oal

® 2 unit cut in rapidity '
= Efficiency falls by a factor of 4, 000
rapidity cut moves farther to right !! |

® When designing a detector; it is essential o_"""'é':'l"f""'i"' N

to be as hermetic as possible !!! 8 6 -4 -2 0 2 4 6 8
rapidity
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Detector requirements from physics
® e+p physics

= Need the same detector for inclusive (ep = e’X), semi-inclusive (ep =
e’X + hadrons) and exclusive (ep = €’p+TT) reactions

» Need to have a large acceptance (both mid- and forward-rapidity)

» Crucial to have particle identification
- ¢, T, K, p, n over wide momentum range and scattering angles

= excellent secondary vertex resolution (charm)
P small systematic uncertainty for e/p polarisation measurements
» small systematic uncertainty for luminosity measurements
® e+A physics
= most requirements similar to e+p guidelines

= additional complication arises from the need to tag the struck nucleus in
exclusive and diffractive reactions

® Also, important to have the same detector for all energies

BROOKHFIUEN 9

NATIONAL LABORATORY



First attempt at detector design
I

] ]
L v [==] | e

B Solenoid / Dipol

| Hadronic Calorimeter

| EM-Calorimeter

M RICH

B High Threshold Cerenkov
B DIRC

[ ] Tracking

® Dipoles need to have good forward momentum resolution

> <«
hadron-beam lepton—-beam

= Solenoid has no magnetic field for r = 0

e RI|CH, DIRC for hadron pid
® High threshold Cherenkov — fast trigger for scattered lepton
® Radiation length very critical = low lepton energies

BROOKHFIVEN
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Latest IR Design for MeRHIC at |P2

N

o DX magnet

No synchrotron shielding included

Height of beam from floor ~ 6 feet

Allows p and A decay product tagging

Horizontal [cm]

46 LB T ! !
A4 1N N Y VS '
; : | : :

Electron 4GeV
Blue 250GeV
Yellow 250GeV
Blue 80GeV
Yellow 80GeV
hard radiation
soft radiation

M= = £ =T & =[] =

p v :
—26-24-22-20— 18 16-14-12-10 -8

—6

-4 -2 0 2 4 6 8

s [meter]

|
10 12 14 16 18 20 22 24 2



MeRHIC Detector in Geant 3

dipole central solenoid

tracking Drift Chambers
ala BaBar

4
! \ [T - ¥
;- ] ""ul rr I . l

\ﬂﬁlll i

(LTI

p—— —

(LT

il

] |

[T

—
—
-—
p——
e
—
——

(L LTI

hadronic calorimeter
high treshhold ~RICH

cherenkov

y

em calorimeter

i o

DIRC is present but not seen

due to position of cut

® Note - no hadronic barrel calorimeter due to height
restrictions at |P2
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MeRHIC detector in Geant 3
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MeRHIC detector in Geant 3
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Why 2 o’clock and not |2 o’clock?

® Start at |12 o’clock originally:
= Detector cost savings
p fully staged detector from MeRHIC to eRHIC
= vertical stage much bigger
= need to buy magnets only once
= can stage detector components (i.e. hadronic calorimeter)
= no moving of detector
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Summary and Outlook

® First steps made on detector design

® Optimisations needed
= Do we need 4T for solenoid and 3 Tm for dipole!?
= VVhat radiation length can be tolerated for low energy electron?
= Optimise the distance from solenoid to dipole

= VVhat is the impact of the beam lines through the detector on the
physics!?

= Need to optimise acceptance at low scattering angle
» Need acceptance down to | degree

® Need to add Roman Pots into detector configuration

® Need to include luminosity monitor and lepton polarimeter in IR
design
BROOKHFIVEN

NATIONAL LABORATORY

16



