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Outline

» What happens to a high-energy parton traversing the hot,
dense medium?
= jet suppression in A+A (from an ATLAS & PHENIX perspective)
= how many experimental handles on quenching do we have?
= what have we learned at the LHC?

= can we capitalize on it with sSPHENIX?

» What happens to (low-x) partons in the cold, dense nucleus?

what are the signatures of saturation?
what are the initial conditions in a heavy ion collision?

tension in d+Au centrality at high-pr

L

opportunities in p+Pb 2013 and p+Au 2015
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High-energy partons traversing the hot, dense medium

» RHIC has discovered (and LHC has confirmed) that a hot,
dense medium is formed in head-on relativistic ion-ion
collisions!

» How does the medium affect the development of a
high-energy parton shower?

> is the energy loss radiative or collisional / what is the path
length dependence?

» how is fragmentation in the medium modified from that in
vacuum?

» what is the mass dependence (e.g. of heavy flavor)?

» what can we say about strong vs. weak coupling?

» How sharply does the coupling change with temperature (or
range of temperatures)?

» can we map out the region from T = T, to the asymptotically
free regime at T — +o00 7

D.V. Perepelitsa Jets in p+A, A+A and centrality (3/ 34)



T T
161 *R™ =20 Pb+Pb@5500 GeV ]
N OR™ -1.0 b=3fm
S 14 DOR™=07 Bl
oL OR™-04
£ 12F  Apmx -
N R™ =02
- 1.0F
o 08F
®g 06
T 04F
0.2
1 1 L
0'GO 50 100 150 200
E; (GeV)

» Reconstruct fragmenting parton into jets

» better indicator of the full parton kinematics (at LO)
» sensitive probe of quenching/suppression (Right: Vitev, Wicks,
Zhang, hep-ph/0810.2807 )

» Technically challenging procedure in HI environment, but

> a well-defined object that experimenters and theorists can
agree on

» Which questions on the previous slide can jets answer?
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Quenched dijet pairs in ATLAS
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> Dramatic event-by-event evidence for jet quenching in late 2010
= ‘“differential” measurement of two jets with (anti-)correlated path
length
» How are low-Er vs. high-Er jets affected? What is there a path-length
dependence? Are jets “lost” or “quenched”? Where does the energy go?

Is the fragmentation modified?
=> https://twiki.cern.ch/twiki/bin /view/AtlasPublic/HeavylonsPublicResults



Jet Rcp: cone size, Er, centrality dependence
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» Definitive measurement of jet quenching from 40-200 GeV
= but, only sees an average effect of the quenching
> Systematic variation with R observed

e

= not an explicit test of broadening (same “jet” can be reconstructed
at a different energy)



Jet fragmentation in ATLAS
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> Probe the structure of the jet by measuring the z-distribution of
fragments in the jet cone
= fragmentation modified (modestly) by the medium!
= but, z is relative to the quenched jet energy
> Sidenote: many evaluations of jet performance in HI are sensitive to
possible modifications of the fragmentation!



v-jet (plus fragmentation) at RHIC
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PHENIX collaboration, nucl-ex/1212.3323
~-jet is a “golden channel” for jet measurements (more so at RHIC!)

Fragmentation 4+ quenching probed with ~-h correlations in PHENIX

=> can recover an excess of high-¢ (low-z) particles with wider jet cone

. . hed
Pro: not measuring fragment relative to ph"

Con: ~-jet energy balance only true at LO anyway



~-jet at the LHC
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»> In ATLAS, also use photon as colorless “control” probe

> Measure change in the mean ratio of y/jet energies (x)
= note: x # 1 for p+p
> Sensitive to details of kinematic selection on =, jet
= might “lose” the associated jet as it falls below the minimum Er

threshold

= demonstrated in the fraction of photons with a jet R,y
» But, these are still integrated over all possible path lengths!

(9/ 34)
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Path-length dependence: RHIC and the LHC

» Measure jet suppression with respect to
the reaction plane
= observed in Rag or v for jets
» Below left: PHENIX collaboration,
nucl-ex/1208.2254 just published in PRC

= strong azimuthal dependence
= relatively weaker in ATLAS (but pr

dependent?)
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Temperature dependence: quenching at RHIC vs. LHC

7 WHDG RHIC Constrained

70 WHDG LHC Extrapolation
m  x° PHENIX0-5%

hey, PHENIX 0-5%

% hy STAR0-5% =10 e
©  ha ALICE 0% ™ £ pacb g “%Tz]_ﬁ
1l ol_© henALICE 7080% & < oF SYM[G oy, T
8 E | = HTL[G<a, T log(1m)]
- 8 ——— Scenario LiLlll [§=1.25 T3/(1/s)]
7E | ——— scenariol, I x 10 [4= (1.25 T/(n/s))]
6F L Kl(au)(Uiao& Shuryak)
r.s:g 5E
i
(1]
3E
0.1 o "
1=
1 1 L
0 5 10 15 20 05 1 15 2 25 3 35 4
p;r (GeV/c) Temperature (T/T )

> Some jet quenching models, when tuned to RHIC data, over-predict the
amount of quenching observed at the LHC

> In fact, it is possible that the coupling could be the strongest when
T ~ T. (as in the RHIC regime)

= crucial to map out the temperature-dependence of quenching
= need detector dedicated to jet physics at RHIC

> nucl-ex/1207.6378 + slides from many sPHENIX collaborators



Sensitivity of RHIC jets to QGP properties

» What could jet measurements at RHIC energies reveal?
= quantitative constraints on different assumptions about key medium

parameters
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Re-investing LHC jet knowledge into sPHENIX @ RHIC
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> Success of ATLAS jet measurements relies on detailed understanding of
performance:

= e.g. efficiency, fake rejection, energy bias, energy uncertainty
> Performance in a concept jet detector at RHIC (nucl-ex/1203.1353)



Digging jets out of the background at RHIC

> “Jet-Underlying Event Separation Method for Heavy lon Collisions at the
Relativistic Heavy lon Collider” (nucl-ex/1203.1353)

= MC proof of principle that jet reconstruction in HI backgrounds at
RHIC is possible
= no modeling of detector effects, but also no fake rejection
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> For any cone size R, there exists a EZfreshold

dominate the reconstructed spectrum

above which “real” jets
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Physics reach of sPHENIX

Hard Processes pQCD @ 200 GeV/|
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» Assuming 20 weeks, only stochastic cooling upgrade to RHIC beams
> 10x10° central (0 — 20%) Au-+Au collisions

» Very many jets!

= also dramatically improved acceptance for dijets
= (Note: first ATLAS dijet asymmetry results used only ~ 1k pairs)



Outlook: jets in A+A

» Measurements of full jets at the LHC are yielding a rich
picture of energy loss

= best strategy is to make lots of measurements (singles,
correlations, tags, fragmentation)

= many not even mentioned: inclusive heavy-flavor, flavor-tagged
jets, other jet structure, energy balance, etc.

» Knowledge being re-invested into preparing for jet physics
program with sPHENIX
= temperature dependence of quenching may be the most
important lever of all!
= capable detector, the experimental methodoloy, and the
statistical precision to significantly constrain QGP properties
= collaboration between two colliders

» Remember: all A+A results are contingent on p(or d)-A
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Jets in the cold, high parton-density nucleus

» Jets in p/d+A experiments are an important control for A4+A

» confirm that the strong suppression is a final state effect
> in the perturbative regime: test pQCD, collinear factorization,
nPDF's, collisional scaling

log(x ™) > Unavoidably, the evolution of the
@ gluon density becomes non-linear in a
certain region of low-x (for fixed Q2)

» saturation effects (and their
description with effective theories)

come into play

log(Q?) > yRH’C ~3 (yLHC ~ 0!)
» how can we probe the consequences
of this with jets?
» Other CNM effects: initial state E-loss, broadening, etc.
» Most if not all of the above are Ta(b)-dependent
» crucial important to obtain experimental handle on the
geometry
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Early success of Glauber model in d+Au

Open points = PHENIX data | 10*
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> Au-going BBC multiplicity used for centrality
determination

> Glauber MC generates distribution of Neon
= dNou(b)/db at fixed impact parameter

> assume a collision w/ given Ncon looks like
N-convoluted p+p

= BBC response (4 convolution) naturally
described with NBD or Gamma dist.

» d+Au results from 2003: inconclusive at high-pr
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High-pt jets in d+Au
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> Note: different jet methodology than in ATLAS measurements

» Ncon-scaling at pr ~ 10 GeV

= but then significant centrality-dependent deviation
=> slight suppression in central events
=> moderate enhancement in peripheral events

= challenging to explain both!

» Even more evident in the Rcp with common systematics cancelled

= systematic with pr (and centrality)
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High-pr jets in d4-Au: centrality “bias”?
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> Result is experimentally robust with respect to single hadrons, different
p+p reference, fiducial cuts, narrower centrality selections, etc.
= only remaining possibility is Noon / centrality

» Challenging to disentangle many years after the fact and with gaps in 7
coverage

= p+Pb run (with rebuilt ATLAS ZDC) could help shed light on this?

D.V. Perepelitsa Jets in p+A, A+A and centrality (20/ 34)



Success of Glauber model in Pb+4-Pb
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Effects of selecting a hard scattering

L5 . , » Frankfurt, Strikman, Weiss,
Jet trigger, y;,=0, py=100GeV

10 GeV ——— hep-ph/1009.2559

Minimum bias -

» Events with hard scatterings
T sample a different set of
impact parameters, even in

p+p

0.5

27bx Py(b), Py(h) [fm™]

= associated with an
N increased multiplicity and
s ) underlying event

b [fm]
> Non-scaled yields of hard probes are a staple of HI physics
= an event with a hard process is assumed to have the “minimum
bias" distribution when categorizing its centrality!
= relevant when the difference in mean underlying event is of the
same scale as the difference between centrality bins!

» PHENIX results include a “bias factor” (0.05-0.10 of the low Rcp)

= undergoing detailed re-investigation



Color fluctuations
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> Alvioli, Strikman, hep-ph/1301.0728

» Color fluctuations can be modeled as event-by-event (and
nucleon-by-nucleon) fluctuations of the effective onn

probability distribution P(o,s), with (o) = oo™ (left)

results in Npare distribution with significantly modified shape

mean Npart is unaffected

potentially important effect on how tightly b and N.on are

correlated!
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“non-Glauber” contributions in MB events
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» ATLAS Minimum Bias triggers select a non-trivial sample of events not
normally described by a Glauber MC

= single/double/central diffraction above the assumed oy
= photonuclear (ultraperipheral) excitation
= Guzey, Strikman, hep-ph/0505088

» Challenging to disentangle from peripheral events



Impact-parameter dependent nPDF’s in p+Pb
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> b-dependent nPDF sets from Helenius, Eskola, Honkaken, Salgado,
hep-ph/1205.5359
= potentially large b-dependence, depending on (x, QZ) and g vs. g
= tuned by min bias R,/444 for different A
= centrality-dependent R, can help constrain



Physics possibilities with the MPC-EX in 2015 p+Au

» MPC-EX: charged particle tracker and EM preshower, 3.1 < |5| < 3.8

= will select direct 's with good purity
= ready in time for RHIC p+Au 2015 run

—All good tracks
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> Left: performance plot from MC studies

> Right: expected uncertainty on measurement of (poorly constrained)
gluon nPDF



An-separated correlations in PHENIX
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> Correlation of hadron in Central Arms (|n| < 0.35) with forward hadrons
in the d-going MPC (3.0 < 1 < 3.8) )

=
=

forward hadrons

=
=

also forward-forward correlations

> Possible to repeat with full jets?

» But first, a quick look at LHC p+Pb results. ..

D.V. Perepelitsa Jets in p+A, A+A and centrality

followed measurements that demonstrated suppressed of inclusive

results well-reproduced by CGC formalism
but other possible explanations could not be ruled out

(27/ 34)



Two early and different probes of saturation
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» First measurement of dNCh/dn, ALICE Collaboration, nucl-ex/1210.3615
= compared to two-component (pQCD+soft+nPDF) models and
saturation models (that reduce the number of gluons available for

particle production)

> “Ridge” seen by all three experiments

= CMS data well-described by CGC calculation (Venugopalan, Dusling,
hep-ph/1211.37.01, with additional predictions!) and hydrodynamic
flow (Bozek, Broniowski, nucl-th/1211.0845)
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An-separated dijets: with full jets
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> Kutak, Sapeta, hep-ph/1205.5035

> Calculation of central-forward jet correlations

= sensitive to saturation effects
= strongest effect at lowest Er
= very large An required!

» How could we even make this measurement?
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Ay




Forward jets in ATLAS and forward-sPHENIX
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> Large n acceptance is needed for rapidity-separated observables

= in ATLAS, inner detector is || < 2.5

= must rely on jets in the (non-projective, coarser-scale) Forward
Calorimeters (3.2 < |n| < 4.9)

= all Pb+Pb (and SM p+p) jet results typically at |n| < 2 (|| < 3.2)

» Forward-sPHENIX design includes forward jet capabilities

=> combination of GEM tracking, HCal, repurposed PHENIX PbGl in
12<n<4



Other CNM predictions for p+Pb
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> Left: Rppp arising from from multiple scattering, Cronin, shadowing
= largest effects are at y = 4
= Kang, Vitev, Xing hep-ph/1209.6030 , predictions for 7°, ~ as well
> Right: additional transverse momentum imbalance <qi>iA - <qi>ip
= systematic with Nco11-dependence
= Xing, Kang, Vitev, Wang hep-ph/1206.1826 , for E{ft > 30 GeV,
yjet -9



Minimum-bias R,pp in ALICE

18f p-Pb 5, =5.02TeV E

1.6 @ ALICE, NSD, charged particles, \r[ms\ <03 - . .
1ab 3 » First measurement of R,p, with charged

particles

= factor of 2 suppression at low-pr

Saturation (CGC), eBK-MC

0.6 Saturation (CGC), reBK . A

04k Satyraton (0GC), P-Sat => little or no Cronin enhancement
1.8} 1] Shadowing, EPS09s (%) - .

1,61 79 LO pQCD + cold nuclear matter E = flat Rpr ~1at hlgh-pT

»> Event selection criteria are 96% efficient for

E “Non-Single Diffractive” p+Pb collisions
* = interpolated p+p reference
:.z— HUING 2.1 i;ﬁfﬁqﬂg& 1> Impressive start to p+Pb program
3 PR, -.-- DHC, no shad E

14F . — DHC, no shad., indep. frag. |

= now need centrality-dependence
= n-dependence (from other experiments)

= correlations

2 4 6 & 10 12 14 16 18 20 B ALICE Collaboration, nucl-ex/1210.4520
P, (GeVic)



Outlook: jets in p+A

» On the horizon: precise and revealing measurements of low
momentum partons in heavy nuclei

test predictions from different frameworks of saturation
resolution of key issues related to centrality
impact-parameter dependence of nPDF's

cold nuclear matter effects such as initial state energy loss,
coherent multiple scattering

R

» Best way forward is a mixed experimental strategy with
several key ingredients:
= control over geometry / centrality
= as large an n-acceptance as possible
= forward jet reconstruction capabilities
= direct photons are a plus
= shared expertise between LHC/RHIC experiments

» Exciting things are happening in the very short- (p+Pb),
short- (p+Au) and medium- (sPHENIX) terms!
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