Looking Toward a Global Analysis of Helicity Distributions Including Data from PH*ENIX

> Christine Aidala Columbia University

> > July 19, 2005

The PHENIX detector

Philosophy:

- ✓ High rate capability & granularity
- ✓ Good mass resolution and particle ID
- Sacrifice acceptance

Central Arms |η| < **0.35** $\Delta \phi = 180$ degrees **Photons** (EMCal: Lead-glass and lead scintillator) **Charged tracks** (Beam-Beam, Drift Chamber, **Pad Chambers**) + RICH rings + EMCal clusters

> Forward Muon Arms $1.2 < |\eta| < 2.4$ $\Delta \phi = 2\pi$

Cross section measurements

PH※ENI〉

Cross section measurements (cont.)

C. Aidala, July 19, 2005

Cross section measurements (cont.)

pQCD scale dependence at RHIC π^0 data vs pQCD with different Theoretical uncertainty of pQCD factorization scales: calculations in various channels: 10 E*d³σ/dp³(mb/GeV²) π^0 10 PHENIX 200GeV p+p->n⁰+X a NLO pQCD 6 F. Aversa et al. NPB327(1989)105 $\sigma(\mu_0/2)$ HERMES CTEQ5M pdf/PKK frag $\sigma(\mu_0)$ (hadron pairs) Scales: μ=p₁/2, p₂, 2p₁ 2µ (factorization 10 scale) 4 10 COMPASS (hadron pairs) 10 3 10 $\mu/2$ PHENIX 2 (direct photon) 10 PHENIX (inclusive hadrons) 10 1 Statistical errors only CDF 10 direct photon 0.5 10 1 5 100 50 (GeV) 10 2 8 Б

(Collin)

Overview of PHENIX spin structure program

Gluon Polarization ΔG	Flavor decomposition $\frac{\Delta u}{u}, \frac{\Delta \overline{u}}{\overline{u}}, \frac{\Delta d}{d}, \frac{\Delta \overline{d}}{\overline{d}}$	Transverse Spin
$\pi \text{Production} A_{LL}(gg, gq \rightarrow \pi + X)$ $\text{Prompt Photon} A_{LL}(gq \rightarrow \gamma + X)$	W Production $A_L(u + \overline{d} \rightarrow W^+ \rightarrow l^+ + v_1)$	Transversity δq : π^+, π^- Interference fragmentation: $A_T \left(p_\perp p \rightarrow (\pi^+, \pi^-) + X \right)$ Drell Yan A_{TT}
Heavy Flavors $A_{LL}(gg \rightarrow c\overline{c}, b\overline{b} + X)$	$A_{L}(\overline{u} + d \rightarrow W^{-} \rightarrow l^{-} + \overline{\nu}_{l})$	Single Asymmetries A _N

C. Aidala, July 19, 2005

Probing Δg

- PHENIX is sensitive to ∆g via doublelongitudinal spin asymmetries in the production of mesons, photons, heavy flavor, and jets
 - First measurements have been made, and a number of additional measurements will become available in the next few years
 - Long-term, greater kinematic coverage and new processes will become accessible due to
 - Detector upgrades
 - Luminosity upgrades
 - Higher energy $\sqrt{s} = 200 GeV \rightarrow 500 GeV$

Pions: an abundant probe

Neutral pion asymmetry projected from 2005 data

Sensitivity to partonic processes

- Neutral pion as well as charged hadron production in the current p_T range dominated by gg and gq scattering
- Higher p_T will be more sensitive to q processes

A_{LL} of charged pions: Determining the sign of Δg

- At higher transverse momentum (p_T > ~5 GeV/c), pions will be dominantly produced via qg scattering
- The tendency of π^+ ($u\overline{d}$) to fragment from an up quark and π^- ($d\overline{u}$) from a down quark and the fact that Δu and Δd have opposite sign will make A_{LL} of π^+ and π^- differ measurably
- This difference will allow us to determine the sign of $\Delta g!$

Charged pions (cont.)

 $\Delta g > 0 \Longrightarrow A_{LL}^{\pi^+} > A_{LL}^{\pi^0} > A_{LL}^{\pi^-}$

C. Aidala, July 19, 2005

13

Direct photons: Cleaner theoretically, more challenging experimentally

Heavy flavor

- Largely from gluonfusion (quadratic Δg)
- Leptons from 2-10 GeV/c predominantly from heavy flavor decays
- Forward measurements sensitive to gluons at lower x

Uncertainty projections for single electrons from D or B decay, including silicon vertex tracker upgrade (2008)

C. Aidala, July 19, 2005

Probing quark and antiquark helicity distributions

- Quark helicity distributions—long-term
 - Gamma pairs from quark-antiquark annihilation (high luminosities required)
 - Drell-Yan (high luminosities required)
 - -W production (500 GeV, muon trigger upgrade, ~2010)

W production to probe the flavorseparated helicity distributions of the sea

- W+ from *ud*, W- from *du* (some small contribution from charm/strange)
- Measure leptonic decay products of W's: forward muons (with identified charge)
- Maximally parity violating—look for *single-longitudinal* spin asymmetries A_L
- *Direct* measurement of flavors—no need to compare different isospin targets as in DIS
- No reliance on FF's

Flavor decomposition via W's (cont.)

$$A_L^{W^+} = \frac{\Delta u(x_1)\bar{d}(x_2) - \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}.$$

 Looking at forward or backward rapidity with respect to the (single) polarized beam lets one select the polarized u or anti-d (in the case of W+)

Expected flavor sensitivity at RHIC

Expected sensitivity vs. x

C. Aidala, July 19, 2005

Physics goals of detector upgrades

upgrade	channel	physics target	x coverage
muon trigger	$W^+ \rightarrow \mu^+$	$\Delta u(x), \Delta d(x)$	$0.2 < x_{u,d} < 0.6$
	$W^- ightarrow \mu^-$	$\Delta \bar{u}(x), \Delta d(x)$	$0.04 < x_{ar{u},ar{d}} < 0.1$
silicon vertex tracker	$c \rightarrow e$		0.01 < r < 0.1
	$b \rightarrow e$		$0.01 < x_g < 0.1$
	$D \to K \pi$	$\Delta g(x)$	$0.1 < x_g < 0.2$
	$B \rightarrow J/\psi$		$0.03 < x_g < 0.1$
	$\gamma + jet$		$0.02 < x_g^{'} < 0.1$
nose cone calorimeter	γ + jet	$\Delta g(x)$	$0.001 < x_g$

Summary

- PHENIX will measure a variety of channels in the near term that are sensitive to Δg
- Looking farther ahead (~2010), detector upgrades and higher energy will allow the x-dependence of Δg to be mapped out more systematically
- W production in future 500 GeV running will provide a new way of measuring the flavor dependence of the sea contributions to the spin of the proton

PHENIX spin running so far

• 2001-2

- *Transversely* polarized collisions
- Average polarization 15%
- Integrated luminosity 0.15 pb⁻¹
- 2003
 - *Longitudinally* polarized collisions
 - Average polarization 27%
 - Integrated luminosity 0.220 pb⁻¹

• 2004

- 5 weeks commissioning
- 4 days longitudinal physics data
- Average polarization 40%
- Integrated luminosity 0.075 pb⁻¹
- 2005
 - Long run (10 wks)
 - $P \sim 50\%$
 - ~10% of total integrated luminosity transverse

Planned PHENIX p+p analyses from 2005 data

- Cross sections
 - Improved: π^0 , direct photons, η , J/ ψ
 - New: $\pi + /\pi$ -
- A_{LL} to probe Δg
 - $\pi^{0},$ direct photons, $\eta,$ $\pi+/\pi-,$ jets, J/\psi, single e+/e-, single $\mu+/\mu-,$ Λ
- Transverse spin observables
 - A_N of π^0 and h+/h-
 - Back-to-back di-hadron asymmetry

Not all of these analyses may lead to publishable results from the current data set, but they all represent short-term goals (~1-2 years)

Direct photon projections

