T-odd Transverse Momentum Distributions in Quark Models and the Role of the Coupling Constant.

> Seminar at the C.N. Yang Institute for Theoretical Physics Stony Brook University, NY, USA February 27, 2012

> > Aurore Courtoy IFPA, Université de Liège, Belgium

Outline

- Hadron Structure
- T-odd Transverse Momentum Distributions
 - Final State Interactions: Sivers & Boer-Mulders functions
 - Evaluation in Models for Hadron Structure
- Rôle of the Coupling Constant
 - The Hadronic Scale: non-perturbative qualitative analysis
 - \sim Final State Interactions and α_s
- \sim Towards a quantitative analysis : α s from hadronic phenomenology

Hadron Structure

Hadron Structure

Hadron ⇔ Constituent quarks ⇔ Current quarks

Nonperturbative vs. Perturbative QCD

Evolution in Q²

Hard Probes and Factorization

Small size configuration \Rightarrow Hard Probes \Rightarrow Hard processes

Deep Inelastic Scattering

Hard Probes and Factorization

Small size configuration \Rightarrow Hard Probes \Rightarrow Hard processes

Deep Inelastic Scattering

How to understand intermediate energy properties?

Nonperturbative aspects of QCD

with d.o.f relevant at intermediate energies

How to understand intermediate energy properties?

Nonperturbative aspects of QCD with d.o.f relevant at intermediate energies

First Principles based effective theories → Lattice QCD

• observables calculated on the Lattice, e.g. form factors, spin densities, ...

• Effective theories and *Model Calculations*

- observables calculated in models for hadron structure
- dynamics of proton and pion

Parameterization thanks to extraction from data

links observables and experimental data

Experimental measurements

the real world ...

How to understand intermediate energy properties?

Nonperturbative aspects of QCD with d.o.f relevant at intermediate energies

▶ First Principles based effective theories → Lattice QCD

observables calculated on the Lattice, e.g. form factors, spin densities, ...

• Effective theories and *Model Calculations*

- observables calculated in models for hadron structure
- dynamics of proton and pion

Parameterization thanks to extraction from data

links observables and experimental data

Experimental measurements

• the real world ...

Spectator Models Constituent Quark Models Bag Model Chiral Quark-Soliton Model

. . .

T-odd TMDs:

Hadronic model calculations

Prototype Process : Semi-Inclusive Deep Inelastic Scattering

SIDIS: $I(I) + N(P) \rightarrow I(I') + h(P_h) + X$

 $Q^2, P \cdot q, P \cdot P_h, P_h \cdot q \rightarrow \infty$ and x, z finite

Factorization

$$P_h$$
 P_h P_h

$$W^{\mu
u} \propto \sum_{q} e_{q}^{2} \int d^{4}p d^{4}k \,\Phi(k,P,S) \gamma^{\mu} \Delta(p,P_{h}) \gamma^{\nu}$$

- $\Phi(k, P, S) \Rightarrow Parton Distribution Functions$
- $\Delta(p, P_h) \Rightarrow$ Fragmentation Functions
- Nonperturbative Objects

Some Asymmetries in SIDIS

Nonperturbative effects of the intrinsic transverse momentum k_T of the quarks inside the nucleon may induce significant hadron azimuthal asymmetries.

Cahn ; Mulders & Tangermans

Azimuthal Asymmetries for unpolarized target in SIDIS

 \sim e.g. A(**φ**_h) ⇒ ⟨cos**φ**_h⟩, ⟨cos2**φ**_h⟩

Single Spin Asymmetries for transversly polarized target in SIDIS

• e.g. $A(\boldsymbol{\phi}_h, \boldsymbol{\phi}_S) \Rightarrow \langle \sin(\boldsymbol{\phi}_h - \boldsymbol{\phi}_S) \rangle, \langle \sin(\boldsymbol{\phi}_h + \boldsymbol{\phi}_S) \rangle$

- ϕ_h = angle between leptonic and hadronic planes
- ϕ_S = angle between leptonic plane and transverse spin of the target
- Trento Convention [PRD70, 117504]

Transverse Momentum Dependent PDFs

Hadronic matrix elements to f(x, k_T)

Number of independent structure functions

Number of Lorentz scalars +hermiticity+parity invariance+Time-reversal invariance

∜

e.g. Sivers & Boer-Mulders functions

[Sivers, PRD41]; Boer & Mulders PRD57.]

(p,S)

• Existence of **Final State Interactions** at leading-order

[Brodsky, Hwang & Schmidt, PLB 530]; Belitsky, Ji & Yuan NPB 656.]

(p,S)

The gauge link:

0th order, No gauge link \longrightarrow T-odd fct = 0 Existence of leading-twist FSI \longrightarrow T-odd fct \neq 0

T-odd TMDs

The Sivers function

Distribution of unpolarized quarks inside a transversely polarized proton

$$\begin{aligned} \mathbf{f}_{1\mathsf{T}}^{\perp\mathcal{Q}}(\mathbf{x},\mathbf{k}_{\mathsf{T}}) &= \mathbf{f}_{\mathsf{q}/\mathsf{p}\uparrow}^{\mathcal{Q}}(\mathbf{x},\tilde{\mathbf{k}}_{\mathsf{T}},\mathsf{S}) - \mathbf{f}_{\mathsf{q}/\mathsf{p}\downarrow}^{\mathcal{Q}}(\mathbf{x},\tilde{\mathbf{k}}_{\mathsf{T}},\mathsf{S}) \\ &= -\frac{M}{2k_{x}}\int \frac{d\xi^{-}d^{2}\vec{\xi}_{T}}{(2\pi)^{3}}e^{-i(x\xi^{-}P^{+}-\vec{\xi}_{T}\cdot\vec{k}_{T})} \\ &\frac{1}{2}\sum_{S_{y}=-1,1}S_{y}\langle P,S_{y}|\bar{\psi}_{\mathcal{Q}}(0,\xi^{-},\vec{\xi}_{T})\mathcal{L}_{\vec{\xi}_{T}}^{\dagger}(\infty,\xi^{-})\gamma^{+}\mathcal{L}_{0}(\infty,0)\psi_{\mathcal{Q}}(0,0,0)|P,S_{y}\rangle \end{aligned}$$

The Boer-Mulders function

Distribution of transversely polarized quarks inside a unpolarized proton

$$\begin{split} \mathbf{h}_{1}^{\perp \mathcal{Q}}(\mathbf{x}, \mathbf{k}_{T}) &= \mathbf{f}_{\mathbf{q}\uparrow/\mathbf{p}}^{\mathcal{Q}}(\mathbf{x}, \tilde{\mathbf{k}}_{T}, \mathbf{S}) - \mathbf{f}_{\mathbf{q}\downarrow/\mathbf{p}}^{\mathcal{Q}}(\mathbf{x}, \tilde{\mathbf{k}}_{T}, \mathbf{S}) \\ &= -\frac{M}{2k_{x}} \int \frac{d\xi^{-} d^{2} \vec{\xi}_{T}}{(2\pi)^{3}} e^{-i(x\xi^{-}P^{+} - \vec{\xi}_{T} \cdot \vec{k}_{T})} \\ &\frac{1}{2} \sum_{S_{\tau}=-1,1} \langle P, S_{z} | \bar{\psi}_{\mathcal{Q}}(0, \xi^{-}, \vec{\xi}_{T}) \mathcal{L}_{\vec{\xi}_{T}}^{\dagger}(\infty, \xi^{-}) \gamma^{+} \gamma^{2} \gamma_{5} \mathcal{L}_{0}(\infty, 0) \psi_{\mathcal{Q}}(0, 0, 0) | P, S_{z} \rangle \end{split}$$

Twofold problem :

- + FSI mimicked by a one-gluon-exchange
 - gluon propagator
- Explicit dependence on the coupling constant
 - directly affected by the value of α_s

Models using 'perturbative' gluons :

- MIT bag model calculation
 - ➡ F. Yuan, PLB 575; AC, Vento & Scopetta, PRD79 074001; PRD80 074032
 - perturbative QCD governs the dynamics inside the confining region
- NR Constituent Quark Model
 - ➡ AC, Vento & Scopetta, PRD78 034002; PRD80 074032
- Other model calculations:
 - 🕈 Gamberg & Schlegel, PLB685 95; Pasquini & Yuan, PRD81 114013; Bacchetta, Conti & Radici, PRD78 074010 ; ...

Two Quark Models Approaches

I. Constituent Quark Model

NR reduction of the interaction - up to $O\left(\frac{k^2}{m^2}\right)$ -

Use of free spinors \longrightarrow

 $f_{1T}^{\perp Q}, h_1^{\perp Q} \neq 0$ comes from Interference of the lower and upper components in the four-spinors of the free quark states The interaction is to be calculated between proton states in a CQM \Rightarrow e.g., Harmonic Oscillator $|N\rangle = a|^2 S_{1/2}\rangle_S$ \Rightarrow SU(6) symmetry for the proton

II. MIT Bag Model

Bag wave function \longrightarrow

 $arphi_m(ec{k}) \propto egin{pmatrix} t_0(ec{k}ec{)}\chi_m \ ec{\sigma}\cdot\hat{k}\,t_1(ec{k}ec{)}\chi_m \end{pmatrix}$

 $f_{1T}^{\perp Q}, h_1^{\perp Q} \neq 0$ comes from the Interference of the lower and upper components in the **bag w.f.**

The interaction is to be calculated between proton states, we choose \Rightarrow SU(6) symmetry for the proton

The Sivers function in the MIT bag model

AC, Vento & Scopetta, PRD79 074001; PRD80 074032

Sivers function:

- 3-body calculation
- No proportionality u and d distribution
- Small Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.02$$

MIT Bag Model

[A.C., Scopetta and Vento, PRD 79]

- 1-body calculation
- \blacktriangleright No proportionality u and d distribution
- Small Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.05$$

Sivers function:

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.02$$

MIT Bag Model

[A.C., Scopetta and Vento, PRD 79]

- 1-body calculation
- No proportionality *u* and *d* distribution
- Small Violation of the Burkardt SR

$$\frac{\langle k_{x}^{u}\rangle + \langle k_{x}^{d}\rangle}{\langle k_{x}^{u}\rangle - \langle k_{x}^{d}\rangle} \simeq 0.05$$

Sivers function:

- 3-body calculation
- No proportionality u and d distribution
- Small Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.02$$

MIT Bag Model

[A.C., Scopetta and Vento, PRD 79]

- 1-body calculation
- \blacktriangleright No proportionality u and d distribution
- Small Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.05$$

Sivers function:

Boer-Mulders function:

• NR Constituent Quark Model

[A.C., Scopetta and Vento, PRD 80]

- 3-body calculation
- no-proportionality u and d distributions

MIT Bag Model

[A.C., Scopetta and Vento, PRD 79]

- 1-body calculation
- No proportionality u and d distribution
- Small Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.05$$

MIT Bag Model

[A.C., Scopetta and Vento, PRD 80]

- 1-body calculation
- no-proportionality u and d distributions

Sivers function:

Boer-Mulders function:

• NR Constituent Quark Model

[A.C., Scopetta and Vento, PRD 80]

- 3-body calculation
- no-proportionality u and d distributions

MIT Bag Model

[A.C., Scopetta and Vento, PRD 79]

- 1-body calculation
- No proportionality *u* and *d* distribution
- Small Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.05$$

MIT Bag Model

[A.C., Scopetta and Vento, PRD 80]

- 1-body calculation
- no-proportionality u and d distributions

Sivers function:

Boer-Mulders function:

• NR Constituent Quark Model

[A.C., Scopetta and Vento, PRD 80]

- 3-body calculation
- no-proportionality u and d distributions

MIT Bag Model

[A.C., Scopetta and Vento, PRD 79]

- 1-body calculation
- No proportionality u and d distribution
- Small Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.05$$

MIT Bag Model

[A.C., Scopetta and Vento, PRD 80]

- 1-body calculation
- no-proportionality u and d distributions

Comparison of T-odd functions in Hadre nic Models

NR CQM

d ----

$$f_{1T}^{\perp(1)q}(x) = \int d^2 \vec{k}_T \frac{k_T^2}{2M^2} f_{1T}^{\perp q}(x, k_T)$$

Sivers function Boer-Mulders function

The QCD evolution problem

→ MIT bag result with μ_0^2 specific to model and MSTW2008 conventions for Λ_{QCD} [AC, Vento & Scopetta, PRD79 074001]

Torino fit with QCD evolution with MSTW2008 conventions for Λ_{QCD} [Aybat, Collins, Qiu & Rogers, 1110.6428 [hep-ph]]

Ok for this particular value of x: interplay (x, k_T) Tricky to evolve downwards in energy Error propagation

The QCD evolution problem

→ MIT bag result with μ_0^2 specific to model and MSTW2008 conventions for Λ_{QCD} [AC, Vento & Scopetta, PRD79 074001]

Torino fit with QCD evolution with MSTW2008 conventions for Λ_{QCD} [Aybat, Collins, Qiu & Rogers, 1110.6428 [hep-ph]]

Ok for this particular value of x: interplay (x, k_T) Tricky to evolve downwards in energy Error propagation

The Hadronic Scale:

non-perturbative qualitative analysis

Hadronic Physics at Intermediate Energies: Hadronic Models

Nonperturbative vs. Perturbative QCD

Models of Hadron Structure

Renormalization Group Eqs.

QCD matrix element \rightarrow associated scale μ_0^2

Hadronic Physics at Intermediate Energies: Hadronic Models

Nonperturbative vs. Perturbative QCD

Models of Hadron Structure

Renormalization Group Eqs.

QCD matrix element \rightarrow associated scale μ_0^2

Matrix Elements

- calculated in hadronic model
- \sim at scale μ_0^2
- switch on QCD evolution

... till Ok Bjorken scaling/experiments

Hadronic Physics at Intermediate Energies: Hadronic Models

Nonperturbative vs. Perturbative QCD

Models of Hadron Structure

Renormalization Group Eqs.

QCD matrix element \rightarrow associated scale μ_0^2

Matrix Elements

~

at scale μ_0^2

calculated in hadronic model

switch on QCD evolution

... till Ok Bjorken scaling/experiments

Suppose there exists a scale at which there is no sea and no gluon:

$$\left\langle \left(u_v + d_v \right) \left(\mu_0^2 \right) \right\rangle_{n=2} = 1$$
 momentum sum rule

QCD evolution introduces gluons and sea quarks:

e.g. CTEQ parameterization PRD51 :

$$\langle (u_v + d_v) \left(Q^2 = 10 \,\mathrm{GeV}^2 \right) \rangle_{n=2} = 0.36$$

Parisi & Petronzio, Phys. Lett. B 62 (1976) 331 Stratmann, Z.Phys. C 60 (1993) 763 Traini et al, Nucl. Phys. A 614, 472 (1997)

Suppose there exists a scale at which there is no sea and no gluon:

$$\left\langle \left(u_v + d_v \right) \left(\mu_0^2 \right) \right\rangle_{n=2} = 1$$
 momentum sum rule

QCD evolution introduces gluons and sea quarks:

e.g. CTEQ parameterization PRD51:

$$\langle (u_v + d_v) \left(Q^2 = 10 \,\mathrm{GeV}^2 \right) \rangle_{n=2} = 0.36$$

Evolve downward high energy data until 2^{nd} moment=1 Find μ_0^2

Parisi & Petronzio, Phys. Lett. B 62 (1976) 331 Stratmann, Z.Phys. C 60 (1993) 763 Traini et al, Nucl. Phys. A 614, 472 (1997)

Models scenarios in MSbar scheme

- ∞ quark model
 - ∞ μ₀²=0.1GeV²
 - $\sim \Lambda_{LO}=.27 \text{ GeV}; \Lambda_{NLO}=.2 \text{ GeV}$
 - $\sim \alpha_{sLO} = 4\pi \times .32$; $\alpha_{sNLO} = 4\pi \times .13$
- ∞ partonic scenario
 - ∞ μ₀²=0.2GeV²

- ----- IK at µ0²
- ----- LO evolution to $Q^2=10 \text{ GeV}^2$
- ----- NLO evolution to $Q^2=10 \text{ GeV}^2$
- CTEQ parametrization

Traini et al, Nucl. Phys. A 614, 472 (1997)

- ----- IK at µ0²
- ----- LO evolution to $Q^2=10 \text{ GeV}^2$
- ----- NLO evolution to $Q^2=10 \text{ GeV}^2$
- CTEQ parametrization

Traini et al, Nucl. Phys. A 614, 472 (1997)

'Perturbative' Coupling Constant

$$\frac{d \, a(Q^2)}{d(\ln Q^2)} = \beta_{N^m LO}(\alpha) = \sum_{k=0}^m a^{k+2} \beta_k$$

 \overline{MS} scheme

 $a=\alpha_s/4\pi$

LO exact perturbative solution $\Lambda{=}250~\text{MeV}$

NLO exact perturbative solution Λ =250 MeV

NNLO exact perturbative solution Λ =250 MeV

Hadronic scale

Infrared Freezing of as

Non-perturbative approaches:

- Importance of finite couplings
- ✤ Taming the Landau pole

e.g. :

Cornwall, Phys.Rev.D26, 1453 (1982) Mattingly & Stevenson, Phys.Rev.D49, 437 (1994) Dokshitzer, Marchesini & Webber, Nucl.Phys.B469 (1996) 93 Cornwall & Papavassiliou, Phys.Rev.Lett.79, 1209 (1997) Fischer, J. Phys. G32, R 253 (2006) Alkofer & von Smekal, Phys. Rept. 353, 281 (2001) Aguilar, Mihara & Natale, Phys. Rev.D 65, 054011 (2002) Aguilar, Binosi & Papavassiliou, JHEP 1007, 002 (2010)

Deur, A. et al. Phys.Lett. B650 (2007) 244-248

Infrared Freezing of as

Non-perturbative approaches:

- Importance of finite couplings
- ✤ Taming the Landau pole

e.g. :

Cornwall, Phys.Rev.D26, 1453 (1982)
Mattingly & Stevenson, Phys.Rev.D49, 437 (1994)
Dokshitzer, Marchesini & Webber, Nucl.Phys.B469 (1996) 93
Cornwall & Papavassiliou, Phys.Rev.Lett.79, 1209 (1997)
Fischer, J. Phys. G32, R 253 (2006)
Alkofer & von Smekal, Phys. Rept. 353, 281 (2001)
Aguilar, Mihara & Natale, Phys. Rev.D 65, 054011 (2002)
Aguilar, Binosi & Papavassiliou, JHEP 1007, 002 (2010)

1st step: Qualitative analysis

Implications of IR finite as in hadronic physics

NP Gluon Propagator: Gluon Mass as IR Regulator

Solving the Schwinger-Dyson eqs ...

$$\Delta^{-1}(Q^2) = Q^2 + m^2(Q^2)$$

J. M. Cornwall, Phys. Rev. D26, 1453 (1982)A. C. Aguilar and J. Papavassiliou, JHEP0612, 012 (2006)

$$m^{2}(Q^{2}) = m_{0}^{2} \left[\ln \left(\frac{Q^{2} + \rho m_{0}^{2}}{\Lambda^{2}} \right) / \ln \left(\frac{\rho m_{0}^{2}}{\Lambda^{2}} \right) \right]^{-1-\gamma}$$

 $m_0 \sim \Lambda - 2\Lambda$

effective gluon mass
phenomenological estimates

Aguilar & Papavassiliou, Phys.Rev.D83:014013,2011 Bogolubsky, Proc. Sci., LAT2007 (2007) 290

NP Gluon Propagator: Gluon Mass as IR Regulator

Solving the Schwinger-Dyson eqs ...

$$\Delta^{-1}(Q^2) = Q^2 + m^2(Q^2)$$

J. M. Cornwall, Phys. Rev. D26, 1453 (1982)A. C. Aguilar and J. Papavassiliou, JHEP0612, 012 (2006)

Aguilar & Papavassiliou, Phys.Rev.D83:014013,2011 Bogolubsky, Proc. Sci., LAT2007 (2007) 290

NP Gluon Propagator: Gluon Mass as IR Regulator

Solving the Schwinger-Dyson eqs ...

$$\Delta^{-1}(Q^2) = Q^2 + m^2(Q^2)$$

J. M. Cornwall, Phys. Rev. D26, 1453 (1982)A. C. Aguilar and J. Papavassiliou, JHEP0612, 012 (2006)

Solution free of Landau pole

Freezes in the IR

Aguilar & Papavassiliou, Phys.Rev.D83:014013,2011 Bogolubsky, Proc. Sci., LAT2007 (2007) 290

NP Momentum-dependence of the Coupling Constant

$$\frac{\alpha_{\rm NP}(Q^2)}{4\pi} = \left[\beta_0 \ln\left(\frac{Q^2 + \rho m^2(Q^2)}{\Lambda^2}\right)\right]^{-1}$$

LO perturbative evolution $\Lambda{=}250~{\rm MeV}$; \overline{MS} scheme

Low mass scenario NP coupling constant $_{m_0=250~MeV}$; $\Lambda{=}250~MeV$; $\rho{=}1.5$

High mass scenario NP coupling constant $m_0=500$ MeV ; $\Lambda=250$ MeV ; $\rho=2$.

Hadronic scale

Perturbative vs. NP 'evolution': Fixing the hadronic scale

2nd moment of f_1

$$\langle q_v(Q^2) \rangle_n = \langle q_v(\mu_0^2) \rangle_n \left(\frac{\alpha(Q^2)}{\alpha(\mu_0^2)}\right)^{d_{NS}^n}$$

LO perturbative evolution $\Lambda{=}250~{\rm MeV}$; \overline{MS} scheme

Low mass scenario NP coupling constant $m_0=250$ MeV ; $\Lambda=250$ MeV ; $\rho=1.5$

High mass scenario NP coupling constant $m_0{=}500~\text{MeV}$; $\Lambda{=}250~\text{MeV}$; $\rho{=}2.$

There exist scenarios that give results in agreement with the perturbative approach

Final State Interactions and α_s

Back to T-odd TMDs

The Sivers function $f_{1T}^{\perp Q}(x, k_T)$

 \Rightarrow Distribution of **unpolarized quarks** inside a **transversely polarized proton**

The Boer-Mulders functions $h_1^{\perp Q}(x, k_T)$

 \Rightarrow Distribution of transversely polarized quarks inside a unpolarized proton

Matrix element of low twist operator

$$f_{1T}^{\perp q}(x,k_{T}) = -\frac{M}{2k_{x}} \int \frac{d\xi^{-} d^{2} \vec{\xi}_{T}}{(2\pi)^{3}} e^{-i(xp^{+}\xi^{-} - \vec{k}_{T} \cdot \vec{\xi}_{T})} \\ \times \frac{1}{2} \sum_{S_{y}=-1,1} S_{y} \langle PS_{y} | \overline{\psi}_{q}(\xi^{-}, \vec{\xi}_{T} (\mathcal{L}_{\vec{\xi}_{T}}^{\dagger}(\infty,\xi^{-}))\gamma^{+} \mathcal{L}_{0}(\infty,0)\psi_{q}(0,0) | PS_{y} \rangle + \text{h.c.}$$

Importance of gauge link

$$\mathcal{L}_{\vec{\xi}_T}(\infty,\xi^-) = \mathcal{P}\exp\left(-ig \int_{\xi^-}^{\infty} A^+(\eta^-,\vec{\xi}_T) \, d\eta^-\right)$$

- holds in covariant gauges
- process dependent

Twofold problem :

- ✤ FSI mimicked by a one-gluon-exchange
 - gluon propagator
- Explicit dependence on the coupling constant
 - relevance of NP scheme for model calculations

Twofold problem :

FSI mimicked by a one-gluon-exchange

gluon propagator

attempt to go beyond the perturbative OGE approximation

- Explicit dependence on the coupling constant
 - relevance of NP scheme for model calculations

Twofold problem :

+ FSI mimicked by a one-gluon-exchange

gluon propagator

attempt to go beyond the perturbative OGE approximation

- Explicit dependence on the coupling constant
 - relevance of NP scheme for model calculations

Example :

- MIT bag model calculation
 - perturbative QCD governs the dynamics inside the confining region
 - no need for NP gluon propagator
 - \rightarrow NP scheme \rightarrow change of hadronic scale
- Other model calculations? e.g. L. Gamberg and M. Schlegel, Phys. Lett. B 685 (2010) 95

Sivers & Boer-Mulders functions

$$0.1 < \frac{\alpha_s(\mu_0^2)}{4\pi} < 0.3$$

Sivers & Boer-Mulders functions

Towards a quantitative analysis :

 α_s from hadronic phenomenology

(pre) Conclusions

Physical picture for the helicity-flip at the quark level

- - Analysis of the Sivers & Boer-Mulders functions in a 3-body model
 - Ingredients: wave functions and non-relativistic reduction of the interaction.
 - **Results:** Correct sign ; Ok Burkardt sum rule

T-odd functions in the MIT bag model

- Analysis of the Sivers & Boer-Mulders functions in a 1-body model
- Ingredients: bag wave function and SU(6) proton state.
- **Results:** Correct sign ; Ok Burkardt sum rule

Conclusions

- \sim Low hadronic scale validated by IR behavior of α_s
- Good description of perturbative dynamics by 'standard scheme': now supported by NP scheme
- Set of parameters needs to be pushed towards 'pure valence's hadronic scale:
 NP scheme favors scenarios valence quarks + sea + gluons
- Quantitative analysis:
 would depend on HOW the IR freezing is obtained.
- ✓ Impact on Phenomenology:
 Value of coupling constant → *theoretical errorban∂* NP gluon propagator
 QCD evolution equations at low Q²?

Great deal of improvements is needed here!

Extraction of αs at low energy

Polarized scattering from both proton and neutron

Deur et al. Phys.Lett. B650 (2007) 244-248

Natale, PoS QCD-TNT09 (2009) 031

Bjorken Sum Rule from JLab & GDH Sum Rule at $Q^2=0$ GeV²

Extraction of αs at low energy

Polarized scattering from both proton and neutron

Deur et al. Phys.Lett. B650 (2007) 244-248 Natale, PoS QCD-TNT09 (2009) 031

Bjorken Sum Rule from JLab & GDH Sum Rule at Q²=0 GeV²

Solution → Deep Inelastic Scattering (DIS) at large Bjorken-x & parton-hadron duality

Liuti, [arXiv:1101.5303 [hep-ph]].

Semi-Inclusive DIS & Extraction of T-odd TMDs from SSAs

A.C., Vento & Scopetta, Eur. Phys. J. A47, 49 (2011)

Extraction of αs at low energy

Polarized scattering from both proton and neutron

Deur et al. Phys.Lett. B650 (2007) 244-248 Natale, PoS QCD-TNT09 (2009) 031

Bjorken Sum Rule from JLab & GDH Sum Rule at Q²=0 GeV²

Solution → Deep Inelastic Scattering (DIS) at large Bjorken-x & parton-hadron duality

Liuti, [arXiv:1101.5303 [hep-ph]].

Semi-Inclusive DIS & Extraction of T-odd TMDs from SSAs

A.C., Vento & Scopetta, Eur. Phys. J. A47, 49 (2011)

Joint analysis: Chen, Courtoy, Deur, Liuti & Vento, work in progress

Do not quench your inspiration and your imagination ; do not become the slave of your model.

Vincent Van Gogh