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Lecture 28
Corrections to the Hydrogen atom energy levels
Spin-Orbit coupling and Relativistic Effects
In the early days people thought the sun went around the earth. In essence they were correct. In fact from the point of view 
of the center of mass, they both go around each other like two dancers - Since the sun is so much heavier of course it 
makes more sense to think that the sun is at the center with the earth moving around it; but from the point of view of the 
earth, the sun goes around the earth. In the same way we can think of a hydrogen atom as a proton going around an 
electron. A moving charge is a current and creates a magnetic field in the vicinity of the electron. This wouldn't do 
anything however we found that electrons have spin and therefore a magnetic moment. So there must be an additional 
term in the hamiltonian which must look something like -mêê·B”÷÷

We had figured out before that the magnetic moment of the electron was -eÅÅÅÅÅÅÅÅ
mc

S
`
  (after the factor of 2 which if you 

remember was the anomalous magnetic moment)

Now the magnetic field in the middle of a current loop from the Biot-Savart law is 
B= 2 pÅÅÅÅÅÅÅÅ

cr
 I  where I is the currect due to the proton.  Now  I= e/t  where tau is the period of the orbit. 

Now L = mvr = mr 2 prÅÅÅÅÅÅÅÅÅÅ
t

     So I = eLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 pmr2

  and B = eÅÅÅÅÅÅÅÅÅÅÅÅÅ
cmr3

L

and we set the new part of the hamiltonian which we will call HSO = e2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m2  c2  r3 L

`
·S

`
   

The SO refers to spin-orbit. Now this is not completely correct since we worked in the rest frame of the electron, which is 
an accelerating reference frame. Correcting for this (Thomas precession) gives 

H
`

SO = e2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2  c2  r3 L

`
·S

`
  

We are working with they hydrogen atom. The hamiltonian is 

H
`

0 = p̀2
ÅÅÅÅÅÅÅÅÅ
2 m

- Ze2
ÅÅÅÅÅÅÅÅÅÅ

r
 = 1ÅÅÅÅÅÅÅÅÅ

2 m
 Hpr

` 2+ L
` 2

ÅÅÅÅÅÅÅÅ
r2 N- Ze2

ÅÅÅÅÅÅÅÅÅÅ
r

       where Hpr
` 2L=-Ñ2A 1ÅÅÅÅ

r
 dÅÅÅÅÅÅ

dr
 rE2 = -Ñ2 1ÅÅÅÅ

r
 d2
ÅÅÅÅÅÅÅÅÅ
dr2

r   

The energy levels are  En = - » En »=- Z2  ÅÅÅÅÅÅÅÅÅÅÅÅ
n2   

and the eigenstates are    Xr”†nlm\=Xr,q,f†nlm\=RnlHrLYl
mHq, fL    (we will just leave things in terms of Rnl  instead of writing 

out the Laguerre polynomials)

We would now like to calculate the corrections to the energy due to H
`

SO.We will use perturbation theory!
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En
H1L=H

`
nn '==Xnlm§H` SO†nlm\

The beauty of this was for the hamiltonian H
`

0, was that all the angular dependence was in the L
` 2

  term. Won't the H
`

SO 
term mess things up? Yes it will. In addition we will have to bring in spin. How do we do all this? 

First we had better define a new angular momentum which is the sum of the spin and orbital angular momentum

J
`

= L
`

+ S
`

. Perhaps this is a new operator which commutes with the new Hamiltonian (H
`

0+H
`

SOL and we can find

eigenfunction of  J
`2 and J

`
z which must give us the angular and spin dependent eigenfunctions.  We will return to this in a 

moment.

Lets now go ahead on use perturbation theory. 

En
H1L=H

`
nn ' =Ÿ0

¶r2drŸ dW RnlHrLYl
mHq, fL e2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2  c2  r3 L

`
·S

`
 RnlHrLYl

mHq, fL 

Now L has derivatives of q and f so we can write           

En
H1L= e2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2  c2 [Ÿ0

¶ RnlHrL 1ÅÅÅÅÅÅÅ
r3  RnlHrL r2dr][Ÿ  Yl

mHq, fLL` ·S
`
Yl

mHq, fLdW]

First lets do the r term

X  nlsjm … 1ÅÅÅÅÅÅÅ
r3  †nlsjm] = Ÿ0

¶R*
nlHrL 1ÅÅÅÅÅÅÅ

r3  RnlHrL r2 „ r = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
lIl+ 1ÅÅÅÅÅ2 M Hl+1L n3  a03 and I simply set f HrL = f = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

lIl+ 1ÅÅÅÅÅ2 M Hl+1L n3  a03

Now let me just tell you that in the position representation we can calculate the following - the third of which I used 
above. 

Ynlsjm … 1ÅÅÅÅ
r

 †nlsjm] = Ÿ0
¶R*

nlHrL 1ÅÅÅÅ
r

 RnlHrL r2 „ r = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n2  a0

Ynlsjm … 1ÅÅÅÅÅÅÅ
r2 †nlsjm\=Ÿ0

¶R*
nlHrL 1ÅÅÅÅÅÅÅ

r2  RnlHrL r2 „ r = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Il+ 1ÅÅÅÅÅ2 M n3  a02

Ynlsjm … 1ÅÅÅÅÅÅÅ
r3 †nlsjm\=Ÿ0

¶R*
nlHrL 1ÅÅÅÅÅÅÅ

r3  RnlHrL r2 „ r = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
lIl+ 1ÅÅÅÅÅ2 M Hl+1L n3  a03

Aside:

As an example in our particular case for n=2  and l=1  and picking j = 3ÅÅÅÅ
2

  m j = 3ÅÅÅÅ
2

  and getting from lecture 26

 ° 3ÅÅÅÅ
2

1ÅÅÅÅ
2
\U "#####1ÅÅÅÅ

3
Y1

1 †-\  +"#####2ÅÅÅÅ
3

Y1
0 †+\

Now lets write down the R21 piece :   j21 m = R21 Y1
m = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3  H2 a0L3ê2  rÅÅÅÅÅÅÅ

a0
 e-rêa0  Y1

m

   The full wave function becomes

  ° 3ÅÅÅÅ
2

1ÅÅÅÅ
2
\U   1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3  H2 a0L3ê2  rÅÅÅÅÅÅÅ

a0
 e-rêa0[ "#####1ÅÅÅÅ

3
Y1

1 †-\  +"#####2ÅÅÅÅ
3

Y1
0 †+\ ]

Yn = 2 l = 1 s = 1ÅÅÅÅ
2

 j = 3ÅÅÅÅ
2

m = 1ÅÅÅÅ
2

… 1ÅÅÅÅÅÅÅ
rk  †nlsjm]=

Ÿ „3 r 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3  H2 a0L3ê2  rÅÅÅÅÅÅÅ
a0

 e-rêa0 I"#####1ÅÅÅÅ
3

Y1
1 X- »  +"#####2ÅÅÅÅ

3
 Y1

0 X+ »\M 1ÅÅÅÅÅÅÅ
rk

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3  H2 a0L3ê2  rÅÅÅÅÅÅÅ
a0

 e-rêa0  I"#####1ÅÅÅÅ
3

Y1
1 †-\  +"#####2ÅÅÅÅ

3
 Y1

0 †+\M 

= 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 H2 a0L3  1ÅÅÅÅÅÅÅÅÅÅ

a02 Ÿ „3 r r2 1ÅÅÅÅÅÅÅ
rk  e-2 rêa0  I 1ÅÅÅÅ

3
… HY1

1 »L2  + 2ÅÅÅÅ
3

… Y1
0 …2M= = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

24 a05 Ÿ „ r r4 1ÅÅÅÅÅÅÅ
rk  e-2 rêa0

for k=1
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

24 a05 Ÿ0
¶„ r r3 e-2 rêa0 = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

24 a05  3 a0
4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8

= 1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
64 a0

    (constant off by 16??)

2 qm28.nb
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Integrate@r3 E-2 rêa, rD

-
1
ÅÅÅÅÅ
8

a ‰- 2 rÅÅÅÅÅÅÅÅÅÅa H3 a3 + 6 r a2 + 6 r2 a + 4 r3L

remember  Xr” †nlm\ = Xr, θ, φ †nlm\ = RnlHrL Yl
mHθ, φL

we have taken care of the RnlHrL  so we just have to worry about  Xq,f†lm\=Yl
mHq, fL

- OK -Lets attack the L
`
·S

`
  term. 

Now  J
`2

= IL` + S
` M2

= L
` 2

+ S
` 2+2L

`
·S

`
    so L

`
·S

`
 = 1ÅÅÅÅ

2
(J

`2-L
` 2-S

` 2)

Xnlm§H` SO†nlm\=Xnlm§ e2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2  c2  r3 L

`
·S

`
 †nlm\= e2  fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 m2  c2  Xlm§ (J`2-L
` 2-S

` 2)†lm\

We recall if J
`

= J1
`

+ J2
`

   then   [ J
`2, J

`
1

2]=0  so in our case

(1)[ J
`2, L

` 2]=0  [ J
`2, S

` 2]=0       So [H
`

0+H
`

SO, J
`2]=  [L

`
·S

`
 , J

`2]=[J
`2-L

` 2-S
` 2, J

`2]=0   were I have been careless 
with the constants out in front

We also know anything with  L
`

commutes with any S
`

since they are different spaces

(2)
so @H` SO, J

`
i]= @H` SO, L

`
i]+[H

`
SO, S

`
i]= e2  fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 m2  c2 {[J
`2-L

` 2-S
` 2, L

`
i]+[J

`2-L
` 2-S

` 2, S
`

i]}= e2  fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 m2  c2 {[J

`2,L
`

i]+[J
`2, S

`
i]}

= e2  fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 m2  c2 [J

`2,J
`

i]=0   So  [H
`

0+H
`

SO, J
`

z]=0

Which means that [H
`

0+H
`

SO, J
`

z]=0 [H
`

0+H
`

SO, J
`2]=0

But note that H
`

SO does not commute with L
`

z  and  S
`

z  since the terms individually above in  (2) do not go to zero (they 
dont commute with  J

`2).

Proof : e.g .1ÅÅÅÅÅÅ
2

 AJ`2, L
`

zE = A 1ÅÅÅÅ
2

 L
` 2

+ 1ÅÅÅÅ
2

S
` 2

+ ⁄iL
`

iS
`

i, L
`

z]=  ⁄i  [L
`

iS
`

i,L
`

zD= ‚
i

  L
`

i[S
`

i,L
`

zD+ [L
`

i,L
`

zD S
`

i= ⁄i   [L
`

i,L
`

zD S
`

i=

 [L
`

x,L
`

zD S
`

x+ [L
`

y,L
`

zD S
`

y +[L
`

z,L
`

zD S
`

z= -iÑL
`

yS
`

x+iÑL
`

xS
`

y∫0               remember [L
`

i , L
`

j]=iÑeijk L
`

k    

Incidentally checking  AJ`2, L
`

z + S
`

zE-iÑL
`

yS
`

x+iÑL
`

xS
`

y-iÑS
`

yL
`

x+iÑS
`

xL
`

y=0 as should be 

We should also check  AH` SO,  L
` 2E = e2  fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 m2  c2 AJ`2
- L

` 2
- S

` 2,  L
` 2E=0 using (1) and similarly

 AH` SO,  S
` 2E = e2  fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 m2  c2 AJ`2
- L

` 2
- S

` 2,  S
` 2E=0 

Remember in QM26 that I said when adding angular momentum. i.e.  J
`
=L

`
+S

`
 we can specify either :

1)  the eigenvalues of J
`2 J

`
z L

` 2and S
` 2  OR 

2) the eigenvalues of L
`

z, S
`

z  L
` 2and S

` 2 

But since the Hamiltonian does not commute with L
`

z, S
`

z so it is best if we use the first of these possibilities

So let the eigenfuctiuons (now adding S) be called

†nlsjm\  where the eigenvalues will be En lHl + 1L Ñ2  sHs + 1L Ñ2  jH j + 1L Ñ2 m j

(Remember in Qm26 we used †nlm\)

qm28.nb 3
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Lets also use the CG coefficients to write out †nlsjm\ for the particular case where l=1. We know s = 1ÅÅÅÅ
2

 Lets also assume 
n=2 which is the lowest n for which we can have l=1

Lets count the states

for l=1, m=1,0,-1       so there are 3, but for each of these s = +1ÅÅÅÅÅÅÅÅ
2

 or -1ÅÅÅÅÅÅÅÅ
2

  for a total of 6. Writing these out in a notation of  
†ml ms\   (since l=1 and s = 1ÅÅÅÅ

2
 is true for everything)

°1 1ÅÅÅÅ
2
\ °1 -1ÅÅÅÅÅÅÅÅ

2
\ °0 1ÅÅÅÅ

2
\ °0 -1ÅÅÅÅÅÅÅÅ

2
\ °-1 1ÅÅÅÅ

2
\ °-1 -1ÅÅÅÅÅÅÅÅ

2
\

Now using the CG coefficients lets write out the j m j representation

My notation will be  †jm j\= †ml ms\    j = 3ÅÅÅÅ
2

and 1ÅÅÅÅ
2

 ° 3ÅÅÅÅ
2

3ÅÅÅÅ
2
\= °1 1ÅÅÅÅ

2
\ 

 ° 3ÅÅÅÅ
2

1ÅÅÅÅ
2
\= "#####1ÅÅÅÅ

3
°1 -1ÅÅÅÅÅÅÅÅ

2
\+ "#####2ÅÅÅÅ

3
°0 1ÅÅÅÅ

2
\

  ° 1ÅÅÅÅ
2

1ÅÅÅÅ
2
\= "#####2ÅÅÅÅ

3
°1 -1ÅÅÅÅÅÅÅÅ

2
\- "#####1ÅÅÅÅ

3
°0 1ÅÅÅÅ

2
\

    ° 3ÅÅÅÅ
2

-1ÅÅÅÅÅÅÅÅ
2

\= "#####2ÅÅÅÅ
3

°0 -1ÅÅÅÅÅÅÅÅ
2

\+"#####1ÅÅÅÅ
3

°-1 1ÅÅÅÅ
2
\

      ° 1ÅÅÅÅ
2

-1ÅÅÅÅÅÅÅÅ
2

\= "#####1ÅÅÅÅ
3

°0 -1ÅÅÅÅÅÅÅÅ
2

\- "#####2ÅÅÅÅ
3

°-1 1ÅÅÅÅ
2
\

        ° 3ÅÅÅÅ
2

-3ÅÅÅÅÅÅÅÅ
2

\= °-1 -1ÅÅÅÅÅÅÅÅ
2

\

Good, we have 6

Now for good measure lets write this out in position representation for the spacial part and matrix representation for the 
spin part so we can see what they look like - this is somewhat schematic hence the use of U   Again for notation:

 †jm j\= †ml ms\U  Yl
m †+\ U   i

k
jjj

Ñ

Ñ
y
{
zzz

 ° 3ÅÅÅÅ
2

3ÅÅÅÅ
2
\= °1 1ÅÅÅÅ

2
\  U Yl

1 †+\ U   i
k
jjjY1

1

0
y
{
zzz

 ° 3ÅÅÅÅ
2

1ÅÅÅÅ
2
\= "#####1ÅÅÅÅ

3
°1 -1ÅÅÅÅÅÅÅÅ

2
\+ "#####2ÅÅÅÅ

3
°0 1ÅÅÅÅ

2
\U "#####1ÅÅÅÅ

3
Y1

1 †-\  +"#####2ÅÅÅÅ
3

Y1
0 †+\U 

i

k

jjjjjjjj

"#####2ÅÅÅÅ
3

 Y1
0

"#####1ÅÅÅÅ
3

 Y1
1

y

{

zzzzzzzz

  ° 1ÅÅÅÅ
2

1ÅÅÅÅ
2
\= "#####2ÅÅÅÅ

3
°1 -1ÅÅÅÅÅÅÅÅ

2
\- "#####1ÅÅÅÅ

3
°0 1ÅÅÅÅ

2
\U "#####2ÅÅÅÅ

3
Y1

1 †-\  -"#####1ÅÅÅÅ
3

Y1
0 †+\U 

i

k

jjjjjjjj
-"#####1ÅÅÅÅ

3
 Y1

0

"#####2ÅÅÅÅ
3

 Y1
1

y

{

zzzzzzzz

    ° 3ÅÅÅÅ
2

-1ÅÅÅÅÅÅÅÅ
2

\= "#####2ÅÅÅÅ
3

°0 -1ÅÅÅÅÅÅÅÅ
2

\+"#####1ÅÅÅÅ
3

°-1 1ÅÅÅÅ
2
\U "#####2ÅÅÅÅ

3
Y1

0 †-\  +"#####1ÅÅÅÅ
3

Y1
-1 †+\U 

i

k

jjjjjjjj

"#####1ÅÅÅÅ
3

 Y1
-1

"#####2ÅÅÅÅ
3

 Y1
0

y

{

zzzzzzzz

      ° 1ÅÅÅÅ
2

-1ÅÅÅÅÅÅÅÅ
2

\= "#####1ÅÅÅÅ
3

°0 -1ÅÅÅÅÅÅÅÅ
2

\- "#####2ÅÅÅÅ
3

°-1 1ÅÅÅÅ
2
\U "#####1ÅÅÅÅ

3
Y1

0 †-\  -"#####2ÅÅÅÅ
3

Y1
-1 †+\U 

i

k

jjjjjjjj
-"#####2ÅÅÅÅ

3
 Y1

-1

"#####1ÅÅÅÅ
3

 Y1
0

y

{

zzzzzzzz

        ° 3ÅÅÅÅ
2

-3ÅÅÅÅÅÅÅÅ
2

\= °-1 -1ÅÅÅÅÅÅÅÅ
2

\ U  Y1
-1 †-\ U   i

k
jjj

0
Y1

-1
y
{
zzz

Now all of these states have the same n. In our example n=2 so before adding the SO coupling  E2=- ÅÅÅÅÅ
4

= -3.4 eV so we 
have a 6-fold degeneracy.  Now  lets find the first order corrections to the energy Xnlsjm»H` SO†nlsjm\   

4 qm28.nb
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Now we know  Ynlsjm … H
`

0 †nlsjm] = En=- Z2  ÅÅÅÅÅÅÅÅÅÅÅÅ
n2        = me4

ÅÅÅÅÅÅÅÅÅÅÅ
2 Ñ2 = 13.6 eV   a0 = Ñ2

ÅÅÅÅÅÅÅÅÅÅÅ
me2

Let's also define the fine structure constant a = e2
ÅÅÅÅÅÅÅ
Ñc

~ 1ÅÅÅÅÅÅÅÅÅÅ
137

Xnlsjm»H` SO†nlsjm\=Xnlsjm» e2  f HrLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 m2  c2 (J

`2
- L

` 2
- S

` 2M†nlsjm\=

Xnlsjm» e2  Ñ2  fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 m2  c2 ( jH j + 1L - lHl + 1L - sHs + 1LL†nlsjm\=

e2  Ñ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 m2  c2  H jH j + 1L - lHl + 1L - sHs + 1LL f

Now plugging in for f

Ynlsjm … H
`

SO †nlsjm] = e2  Ñ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 m2  c2  H jH j + 1L - lHl + 1L - sHs + 1LL 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

lIl+ 1ÅÅÅÅÅ2 M Hl+1L n3  a03 = a2
ÅÅÅÅÅÅÅÅÅÅÅ
2 n3

H jH j+1L -lHl+1L- 3ÅÅÅÅÅ4 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

lIl+ 1ÅÅÅÅÅ2 M Hl+1L
=

a2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 n3  lIl+ 1ÅÅÅÅÅ2 M Hl+1L

9
l j = l + 1ÅÅÅÅ

2

-Hl + 1L j = l - 1ÅÅÅÅ
2

Now just before we figure out how big this is. I have to tell you that there is another correction of the same order. Its the 
relativistic correction and I will do some quick guess to this. 

The relativstic Correction

Lets first start classically. T= p2
ÅÅÅÅÅÅÅÅÅ
2 m

is the non-relativistic kinetic energy.  If the particle is moving fast  we better add a 
correction. We have to use 
IT = E - mc2 =

è!!!!!!!!!!!!!!!!!!!!!!!!!!!p2 c2 + m2 c4 - mc2 = mc2A1 + I pÅÅÅÅÅÅÅÅ
mc

M2E1ê2
- mc2 = mc2A1 + 1ÅÅÅÅ

2
 I pÅÅÅÅÅÅÅÅ

mc
M2 - 1ÅÅÅÅ

8
 I pÅÅÅÅÅÅÅÅ

mc
M4 ...M - mc2

= p2
ÅÅÅÅÅÅÅÅÅ
2 m

- 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m3  c2  p4   

Now we will just turn this into QM   p̀2
ÅÅÅÅÅÅÅÅÅ
2 m

- 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m3  c2  p̀4.  We will call H

`
rel=- 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

8 m3  c2  p̀4

Lets use perturbation theory again and find Erel
1 = Ynlsjm » H

`
rel » nlsjm] =- 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

8 m3  c2 Xnlsjm » p̀4 » nlsjm\

There is a trick to this since p̀ is hermitian. 

X » p̀4 »\=Y … p̀2† p̀2 …]   where the »nlsjm\  are eigenkets. Now adding this term into the Hamiltonian may change the 
eigenkets.  (We were lucky above, since we found that the new terms commuted with the hamiltonian. These will not. [ p̀4, 
V(r)]∫0

Here is where I "cheat" again. Actually I am using 1st order perturbation theory. What I want to do is that it does not 
change the eigenkets much, so we will stick with the original ones i,e, †nlsjm\
The Schrodinger eqn is A p̀2

ÅÅÅÅÅÅÅÅÅ
2 m

+V(r)]†\=E†\  so 

we know p̀2†\=2m(E-V(r))†\   Taking the hermitian conjugate of this gives  X§ p̀2†=X§2m(E-V(r))

So X » p̀4 »\=Y … p̀2† p̀2 …] = X§@2 mHE - V HrLD@2 mHE - V HrLD †\ = 4 m2@E2 - 2 E XV\ + XV 2\]
and the correction is 

X H` rel\=- 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m3  c2 X » p̀4 »\=- 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

8 m3  c2 4 m2@E2 - 2 E XV\ + XV 2\]= -1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 mc2 @E2 - 2 E XV \ + XV 2\]=

qm28.nb 5
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But V HrL = - Ze2
ÅÅÅÅÅÅÅÅÅÅ

r
  

so the correction is  (Setting Z=1, and remembering = me4
ÅÅÅÅÅÅÅÅÅÅÅ
2 Ñ2 = e2

ÅÅÅÅÅÅÅÅÅÅÅ
2 a0

   a0 = Ñ2
ÅÅÅÅÅÅÅÅÅÅÅ
me2    )

XH` rel\ = -1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 mc2  AE2 + 2 EZe2 Y 1ÅÅÅÅ

r
] - Z2 e4 Y 1ÅÅÅÅÅÅÅ

r2 ]E = -1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 mc2  AE2 + 2 EZe2 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n2  a0
+ Z2 e4 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Il+ 1ÅÅÅÅÅ2 M n3  a02 E = -1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 mc2 @E2 - 4 E2+ 4 nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Il+ 1ÅÅÅÅÅ2 M
]=

-En2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 mc2 A 4 nÅÅÅÅÅÅÅÅÅÅÅÅ

l+ 1ÅÅÅÅÅ2
- 3E= - a2

ÅÅÅÅÅÅÅÅÅÅÅ
4 n4 A 4 nÅÅÅÅÅÅÅÅÅÅÅÅ

l+ 1ÅÅÅÅÅ2
- 3E

Now we can add this to the SO correction and we have  IsHs + 1L = 1ÅÅÅÅ
2

 I 1ÅÅÅÅ
2

+ 1M = 3ÅÅÅÅ
4
M  and when we put in l = j ≤ 1ÅÅÅÅ

2
 it 

doesn't change the answer

XH` SO+ H
`

rel\= a2
ÅÅÅÅÅÅÅÅÅÅÅ
2 n3

H jH j+1L -lHl+1L- 3ÅÅÅÅÅ4 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

lIl+ 1ÅÅÅÅÅ2 M Hl+1L
- a2

ÅÅÅÅÅÅÅÅÅÅÅ
4 n4 A 4 nÅÅÅÅÅÅÅÅÅÅÅÅ

l+ 1ÅÅÅÅÅ2
- 3E= ÅÅÅÅÅÅÅ

n2  a2
ÅÅÅÅÅÅÅÅ
n2 A nH jH j+1L -lHl+1L- 3ÅÅÅÅÅ4 L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 lIl+ 1ÅÅÅÅÅ2 M Hl+1L

- nÅÅÅÅÅÅÅÅÅÅÅÅ
l+ 1ÅÅÅÅÅ2

+ 3ÅÅÅÅ
4
E = ÅÅÅÅÅÅÅ

n2 A a2
ÅÅÅÅÅÅÅÅ
n2  

i
k
jjj 3ÅÅÅÅ

4
- nÅÅÅÅÅÅÅÅÅÅÅÅÅ

j+ 1ÅÅÅÅÅ2

y
{
zzzE

 We can the full formula for the energy levels of hydrogen including the relativistic and SO contributions, which are 
together called the fine-structure (actually there is more called the hyperfine structure but thats for grad school since our 
time is up)

Enj= - ÅÅÅÅÅÅÅ
n2 A1 + a2

ÅÅÅÅÅÅÅÅ
n2  

i
k
jjj nÅÅÅÅÅÅÅÅÅÅÅÅÅ

j+ 1ÅÅÅÅÅ2
- 3ÅÅÅÅ

4
y
{
zzzE

for our case where n = 2 a2
ÅÅÅÅÅÅÅÅ
n2  

i
k
jjj nÅÅÅÅÅÅÅÅÅÅÅÅÅ

j+ 1ÅÅÅÅÅ2
- 3ÅÅÅÅ

4
y
{
zzz=9

a2
ÅÅÅÅÅÅÅÅ
16

for j = 3ÅÅÅÅ
2

5ÅÅÅÅÅÅÅ
16

 a2 for j = 1ÅÅÅÅ
2

Now we can see several things here

1) the 6-fold degeneracy for l=1, has now been broken up into the j = 1ÅÅÅÅ
2

and j = 3ÅÅÅÅ
2

  states so its still degenerate since 
there are 2 j = 1ÅÅÅÅ

2
states and 4 j = 3ÅÅÅÅ

2
  states. 

2) the size of the correction by a factor a2~1/10000  and larger for the j = 1ÅÅÅÅÅ
2

 state than the 3ÅÅÅÅ
2

state
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