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Lecture 28
Corrections to the Hydrogen atom energy levels
Spin-Orbit coupling and Relativistic Effects

In the early days people thought the sun went around the earth. In essence they were correct. In fact from the point of view
of the center of mass, they both go around each other like two dancers - Since the sun is so much heavier of course it
makes more sense to think that the sun is at the center with the earth moving around it; but from the point of view of the
earth, the sun goes around the earth. In the same way we can think of a hydrogen atom as a proton going around an
electron. A moving charge is a current and creates a magnetic field in the vicinity of the electron. This wouldn't do
anything however we found that electrons have spin and therefore a magnetic moment. So there must be an additional
term in the hamiltonian which must look something like --B

We had figured out before that the magnetic moment of the electron was r’n—ié (after the factor of 2 which if you
remember was the anomalous magnetic moment)

Now the magnetic field in the middle of a current loop from the Biot-Savart law is
B:% I where | isthe currect due to the proton. Now 1= e/r where tau is the period of the orbit.

NowL=mvr=mr2Z Sol=-%, andB=—2,L
T 2 mr cmr

. . . . 2 ~
and we set the new part of the hamiltonian which we will call Hso =—%5—L:

u»

The SO refers to spin-orbit. Now this is not completely correct since we worked in the rest frame of the electron, which is
an accelerating reference frame. Correcting for this (Thomas precession) gives

A~ 2 A A
— € .
Hso T 2m2c2y3 LS

We are working with they hydrogen atom. The hamiltonian is

~ 2 2 2
bz ze? _ 1 2, L ) Ze 22— z2[1 d ]2 21 d
Hy= 2 - & =— IR o = = % — ¢ = L
0 om . om (pr 2 . where (pr ) h [r o I’] h . drzr

2
The energy levels are E, = — | E, =—Zn—2R

and the eigenstates are  (T|nIm)=(r,0,¢|nIm)=Rn(NY,™(@, ¢) (we will just leave things in terms of Ry, instead of writing
out the Laguerre polynomials)

We would now like to calculate the corrections to the energy due to Hso.We will use perturbation theory!
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En=Hpy'==(nlm|Hso|nlm)
. . . ~ . A2 ~
The beauty of this was for the hamiltonian Hg, was that all the angular dependence was in the L~ term. Won't the Hso

term mess things up? Yes it will. In addition we will have to bring in spin. How do we do all this?

First we had better define a new angular momentum which is the sum of the spin and orbital angular momentum

a ~ A

J =L +§. Perhaps this is a new operator which commutes with the new Hamiltonian (Ho+Hso) and we can find

eigenfunction of 3% and J, which must give us the angular and spin dependent eigenfunctions. We will return to this in a
moment.

Lets now go ahead on use perturbation theory

En®=Hp,' = [7r2dr [dQ Ry(MYi™(6, ¢) 5355 LS Run)Y\™(@, ¢)

2m2 02 r3
Now L has derivatives of § and ¢ so we can write
EnV= 55— [ Ru(n) 5 Ru(0) 2dr][[ Y6, $)L-8Y"(@, $)d0]

First lets do the r term

2m2 2

1

00 O 1 2 _ 1 H _f _
(nISJm| nlsjm) = fo R*ni(n) — Ra(N r?dr = ——=——— and | simplyset f(r) = f = W

I(I+21-)(I+l)n3 ag

Now let me just tell you that in the position representation we can calculate the following - the third of which I used
above.

(nisjm | 2 Inlsjm) = [[*R*y(r) = Ru(n) r2 dr =

n2ag

H 1 f\— [P D 1 2 — 1
(nisjim | = Inlsjm)= "R (1) = Rui() ¥ dr—m

. i . — (R i 2 - 1
(nisjm | = Inlsjm) fo R*ni(r) = Ru(n r2 dr ST

Aside:

As an example in our particular case for n=2 and I=1 and picking j = % mj = % and getting from lecture 26

2 L= Iyt + 200

i i . — m_ 1 I a-Tlagy.m
Now lets write down the Ry; piece: ¢oim =R Y1 75 2e0l7 3 e Y,

The full wave function becomes
3 1y I ea
3% T w eIV ) V8]

<n=2|=1s=%j=%m— 2| & Inisjm)=

3r 1 g1/ [1vy 1 [2 -/ [1 vy 1,_ 2 0
fd ‘/—(230)3/2 ao ° R Yl ¢+ ) rk \/_(Zao)e’/2 ao e ( o ARV RS +))

-1 1 3y 2 1 —2r/a0 1 1 +£ 0[2\= 4 1 o-2r/ag
EYETSE aozfcl re xe (3 | (Y12 2 - | Y% ) [drr e

for k=1

4
3g-2r/3g — _ 1 _ 33%" _ 1 Y
5 jpdrr v Sio (constant off by 162?)

= 24a05

24a
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Integrate[r® E™2"/2, r]

1 2
-3 ae @ Ba®+6ra’+6rla+4rd

remember (¥ {nlm) = (r, 0, ¢ {nlm) =R (r) /" (6, @)
we have taken care of the Ry (r) so we just have to worry about (8,¢|Im)=Y,"(9, ¢)

- OK -Lets attack the L-S term.

Now J*=(L+8) ="+8"+2L$ sol:§ = 1(3"-L"$7)
o2 a2 A2

(nlm|A so|nlm)= (nlm|2—2ﬁLS |n|m)- 2 i {(m[(J"- -§ )|Im)
We recall if § = 3, + J, then [J°, 3,°]=0 soin our case

[§% 0%=0 [§% 85=0 So[Ho+Fso, 3°1= [L§, JH=[3°-1%-§7, 3%1=0 were | have been careless O

with the constants out in front
We also know anything with L commuteswith any§ since they are different spaces

~ 2 A A~ ~ 22 Az A a2
s0 IHso, J-]‘ [Hso, Lil+[Hso, Sil=4- e ={lJ - % L+8%0%8° ST {[J LI+3% 813 @

4m202 [J Ji]=0 So [Ho+Hso, J,]=0

Which means that [Fg+Hso, J,]=0 [Ao+Hso, 3°]=0

But note that Hso does not commute with [, and S, since the terms individually above in (2) do not go to zero (they
dont commute with J).

a2 A A2 A A A A A PEPNEEN A A A
Proof : e.g < [J7, Lz]=[§|_ 1874+ nilis;, L= 3 [0S L =) GISL I+ LG S= 2 [6.G1 S
[Ly, L5 St [Ly,LZ y +IL;, L1 8= -inly Sx+inl,Sy#0 remember [L;, C;]=ife Ly
Incidentally checking [ ] -inl Sx+|hL Sy-th L, +ins, Ly =0 as should be

We should also check [Hso, ] = 1o [52 _[7-8? ]=0 using (1) and similarly

Hso, 8% = J2-1%-¢% =0
2

Remember in QM26 that | said when adding angular momentum. i.e. J=L+S we can specify either :

1) the eigenvalues of j? L and §° OR

2) the eigenvalues of [,, §, L%and §°

But since the Hamiltonian does not commute with L, S, so it is best if we use the first of these possibilities
So let the eigenfuctiuons (now adding S) be called

Inlsjm) where the eigenvalues will be Eq I(1 + 1) %% s(s+ 1) %% j(j + 1) #% m;

(Remember in Qm26 we used |[nImy))
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Lets also use the CG coefficients to write out [nlsjm) for the particular case where I=1. We know s = % Lets also assume
n=2 which is the lowest n for which we can have I=1

Lets count the states

for =1, m=1,0,-1  so there are 3, but for each of these s = == or — 1 for a total of 6. Writing these out in a notation of
|[myms) (since I=1and s = l is true for everything)

1P >|l =15

Now using the CG coefficients lets write out the j m; representation

My notation will be [jm;)=[myms) j= % and %

=[1 1)
£>=\/T\1:1-+\/7\0£
>\/—|1 Ly-JIp b
SR EL R A
%;;-> VibH-yil1d

3 -3\— -1
7 2

Njw N|w

Good, we have 6

Now for good measure lets write this out in position representation for the spacial part and matrix representation for the
spin part so we can see what they look like - this is somewhat schematic hence the use of = Again for notation:

imp= mmo= vy = ()

3omnd s ()
1v. [Ty, 2y.0 \/?

L=V Er 2o eIt +f 20| Y

‘/;1

Ih=JZpn - b=yt ([ivo e J}l
L= 20 Loy -1 =2V 01 vt [

3=Vl il e \/7Y1I>\/7Y11|+>{

0
3 —3 — -1 —
> SFFl 2 Yty = (Yl_l)

N2

\/?

Jrv
ST

Now all of these states have the same n. In our example n=2 so before adding the SO coupling E,=- %: -3.4 eV so we
have a 6-fold degeneracy. Now lets find the first order corrections to the energy (nlsjm|Hso|nlsjm})
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. ~ . _ ZZR 4 h2
Now we know (nlsjm | Ho [nlsjm) = En=—t7  R= 5 =136eV a=—
Let's also define the fine structure constant @ = % ~ 13%
A 2 N A N
(nlsjm|HA solnlsjmy=(nlsjm| :m;(g G7-0%-8 2)|n|sjm>=
Q225 .
(nlsjm| meg C; ((j+1) =10 +1) = s(s + 1))nlsjm)=
2,2 ..
S G+ 10+ —ss+1) f
Now plugging in for f
A R AT _ _ 1 _ Ra? (iG+D) -0+1)-F) _
(nlsjm [ Hso Inlsjm) = 755 (J(G+1) =10 +1) = s(s + 1) I+ 3)d+nndagd 205 ik d)ae
i— 1
Re? I j=1+ >
2n3 |(|+%)(|+1) —(1+1) j=1- %

Now just before we figure out how big this is. | have to tell you that there is another correction of the same order. Its the
relativistic correction and I will do some quick guess to this.

The relativstic Correction

2
Lets first start classically. T:Z”—m is the non-relativistic kinetic energy. If the particle is moving fast we better add a
correction. We have to use
T _E_ e _ 2 _ me R YA L N 1( P2 _ 1 (P \_ a2
(T=E-mc?=vp2c2+m2ct —me? =me2[1+ (L) —me? =me?[1+ 2 (2)° - = (2)"..)-me

mc mc

2
=0 __1 4
T 2m gm3 c2 P
- - P p_z _ 1 4 - ~ - 1 4
Now we will just tumn this into QM = — —3— p". We will call Hye=— ———p

Lets use perturbation theory again and find Ee* = (nlsjm | Hye | nlsjm) =— mmlsjm | p* | nlsjm)

There is a trick to this since p is hermitian.

(1p*D=(] p*" p?|) where the Inlsjm) are eigenkets. Now adding this term into the Hamiltonian may change the
eigenkets. (We were lucky above, since we found that the new terms commuted with the hamiltonian. These will not. [p*,
V(r)]+0

Here is where | "cheat" again. Actually | am using 1st order perturbation theory. What | want to do is that it does not
change the eigenkets much, so we will stick with the original ones i,e, |nlsjm)

The Schrodinger eqn is |%+V(r)]|)=E|) S0
we know p2|y=2m(E-V(r))|) Taking the hermitian conjugate of this gives (|p2'=¢12m(E-V(r))
So (| p*=(| p*T P2 ) = ([2mE - V(D)I[2mE - V()] |) = 4m?[E? = 2E (V) + (V2)]

and the correction is

(Rre)=-5—5 (| p* =537 4M?[E2 = 2E(V) +(VA)]= = [E2 - 2E (V) +(V2)]=
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ButV(r) = - 2

ion i ing Z= ingR=met _ e o - A2
so the correction is (Setting Z=1, and remembering R = 277 = 2ag a =~ )

4 v -1 [p2 2/1\ 2.4 (1\]_ -1 [E2 2 1 2 a4 1 _ -1 2 _AFE24_4n 1=
(Hret) = 55 |[E? +2EZ€? (2) - Z%e* ()| = 55 [E? +2EZe 7 t2%e (I+%)n3a02]_ —|E? - 4E +(|+%)]

—Ep? [ _4n _ _Ra?7 4n

Zmr(]:2[|+% _3]_-L[ _3]

Now we can add this to the SO correction and we have (s(s + 1) = % (% +1)= %) and when we putin| = j+ % it
doesn't change the answer

N N 2 (j(+D) -10+D-3) %2 1 an ® o2 1 n(iGi+D —10+1-3) n
Hent+ H - Rar 1) _Ra _12l= 1) 7
(Hsot Hee)=5 3 I(1+3) (+1) 4nt [ 1+ |

$3= R i(g_ n )I
n? n? 21(1+3) (1+1) L R W

We can the full formula for the energy levels of hydrogen including the relativistic and SO contributions, which are
together called the fine-structure (actually there is more called the hyperfine structure but thats for grad school since our
time is up)

_ R 2 3
Enj—' ?[1+ %2-(];% - X)J

2
e for i = 3
p 2 forj=2
forourcasewheren=2 & | 3= 16 2
n j+5 4 5 2 ._—l-
2 %Y for j= >

Now we can see several things here

1) the 6-fold degeneracy for I=1, has now been broken up into the j = % and j = % states so its still degenerate since

thereare 2 j = > statesand4 j = 3 states.

2) the size of the correction by a factor #?~1/10000 and larger for the j = zi state than the %state
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Figure 6.9: Energy levels of hydrogen, including fine structure (not to scale).
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