

Fun4All

This “Tutorial” is NOT a C++
introduction

• It should give you an idea how Fun4All works in principle
• Fun4All has been around since Run3 and is constantly evolving

(especially between Runs) – this tutorial will only cover the
basics

• You don’t need to be a C++ wizard to analyze data
• Have a look at Martins C++ tutorial:

http://www.phenix.bnl.gov/~purschke/CppCourse_BNL/
• Speak up now if you don’t know what a base class is, that’s the

only thing you need to know here
• Caveat: this is biased towards Central Arm analysis. The other

experiment does things differently when it comes to analyzing
the data

The basic Flow of a PHENIX Analysis

That does not imply that Fun4all stands between you and PRL,
 that’s the job of the PWG’s

Structure of Fun4All

DST

Raw Data (PRDF)

PISA Hits

That’s all there is to it (as long as you don’t look under the hood)

Input Managers Output ManagersFun4AllServer

Analysis Modules

DST

Raw Data (PRDF)

Simulated PRDF

Histogram Manager

Root File

Node Tree

• The Node Tree is at the center of the Phenix software universe (but it’s more
or less invisible to you). It’s the way we organize our data.

• We have 3 different Types of Nodes:
• PHCompositeNode: contains other Nodes
• PHDataNode: contains any object
• PHIODataNode: contains objects which can be written out
• PHCompositeNodes and PHIODataNodes can be written to a file and read

back
• This file contains root trees, the node structure is reflected by the branch

names
• We currently save 2 root trees in each output file, one which contains the

eventwise information, one which contains the runwise information
• Input Managers put Data on the node tree, output managers save selected

nodes to a file.

TOP (PHCompositeNode)/

 DCM (PHCompositeNode)/

 DST (PHCompositeNode)/

 PhHadCglList (PHIODataNode)

 EventHeader (PHIODataNode)

 Sync (PHIODataNode)

 TrigLvl1 (PHIODataNode)

 PHGlobal (PHIODataNode)

 emcClusterContainer (PHIODataNode)

 AccCluster (PHIODataNode)

 PHCentralTrack (PHIODataNode)

 ReactionPlaneObject (PHIODataNode)

 RUN (PHCompositeNode)/

 RunHeader (PHIODataNode)

 TrigRunLvl1 (PHIODataNode)

 TrigRunLvl2 (PHIODataNode)

 Flags (PHIODataNode)

 DetectorGeometry (PHIODataNode)

 PAR (PHCompositeNode)/

 PRDF (PHDataNode)

Node Tree for real
Fun4All prints it out after everything is said
and done in the BeginRun(), this is the tree
You see when running our analysis train

These Nodes are create by default

These Nodes are “special” – they serve as
default for the I/O, the objects under the
DST Node are reset after every event to
prevent mixing of events. You can select
objects under the DST Node for saving,
objects under the RUN Node are all saved
in the output file

Fun4All can keep multiple node trees and Input/Output
Managers can override their default Node where to put the
data, but then things get too complicated for this occasion
This is only needed for special applications which are not
mainstream yet (e.g.embedding).

It’s all about choices - Input

• Fun4AllDstInputManager: Reads DST’s, if reading
multiple input files it makes sure all data originates
from the same event

• Fun4AllNoSyncDstInputManager: Reads DST’s but
doesn’t check events for consistency (needed when
reading simulated input together with real data for
embedding or if you just feel like screwing up)

• Fun4AllPisaInputManager: Reads PISA Hits files
• Raw Data (PRDF) uses still different mechanism

 CAVEAT:
You cannot mix reading of Raw Data and DST/PISA

• Fun4AllDstOutputManager: Write DST’s

• Fun4AllEventOutputManager: Writes
Events in prdf format (packet selection
possible)

• Fun4AllPrdfOutputManager: Write
simulated raw data file.

It’s all about choices - Output

 Caveat:
You can only write Events if the input are Events (PRDF File)

Your Analysis Module

• Init(PHCompositeNode *topNode): called once at startup

• InitRun(PHCompositeNode *topNode): called whenever data from a
new run is encountered

• Process_event (PHCompositeNode *topNode): called for every
event

• ResetEvent(PHCompositeNode *topNode): called after each event is
processed so you can clean up leftovers of this event in your code

• EndRun(const int runnumber): called before the InitRun is called (caveat
the Node tree already contains the data from the first event of the new run)

• End(PHCompositeNode *topNode): Last call before we quit

You need to inherit from the SubsysReco Baseclass
(offline/framework/fun4all/SubsysReco.h) which gives the methods
which are called by Fun4All. If you don’t implement all of them it’s
perfectly fine (the beauty of base classes)

In your class you can implement as many additional methods
As you like, but these are the ones called by Fun4All

Beware of Examples in CVS, all of them are outdated, most
of them were already wrong when they were advertised as
the ultimate solution for your needs and none of them are
kept up to date (but you might get some ideas anyway)

Okay, How do I navigate the
Node Tree which is in every

argument????

#include “PHCentralTrack.h”
#include “getClass.h”

Myanalysis::process_event(PHCompositeNode *topNode)
{
 PHCentralTrack* cnt =
findNode::getClass<PHCentralTrack>(topNode,"PHCentralTrack");
}

You need to know the name of the node and the class of the
Object you want (e.g. some PHCentralTrack version in the
Node called PHCentralTrack (that’s where the Fun4All printout
Of the Node tree comes in handy)

And you don’t even have to know which one of our gazillion versions
of PHCentralTrack is used

The bad news is that it is up to you to figure out what
is inside these objects, there is hardly any documentation
and one has to go into the source code to find out what
is actually being filled into the variables (e.g. PHCentralTrack
and Emc Clusters have different ideas of what “tof” means)

Blah Blah Blah – Very nice, but
how do I run the show?

Fun4All provides only building blocks, you need to put them together
yourself in your root macro according to your needs

void RunMyAnalysis()
{
gSystem->Load("libfun4all.so");
gSystem->Load(“libmynobelprizewinninganalysis.so");
Fun4AllServer *se = Fun4AllServer::instance();
Fun4AllInputManager *in1 = new Fun4AllDstInputManager("DSTIN1");
Fun4AllInputManager *in2 = new Fun4AllDstInputManager("DSTIN2");
se->registerInputManager(in1);
se->registerInputManager(in2);
in1->AddFile("PWG_MinBias_run4AuAu_Central_200GeV_v01_pro66-0000121548-0003.root");
in2->AddFile("CNT_MinBias_run4AuAu_Central_200GeV_v01_pro66-0000121548-0003.root");
SubsysReco *my1 = new FirstNobelPrize();
se->registerSubsystem(my1);
SubsysReco *my2 = new SecondNobelPrize();
se->registerSubsystem(my2);
se->run();
se->End();
delete se;
}

Use objects spread over 2 DST’s – you need 2 input managers

The order of the registerSubsystem() calls determines the order
In which modules are called – nobody protects you from doing it
wrong (user knows best approach)

No path to the input file – our file catalog will find it for you
and so protects you against us moving files or using multiple
Copies to reduce the load on our servers

Master Recalibrator

We changed our strategy how to go about reconstructing our data from

“start only when all calibrations are final” (which delayed us for a year) to

“that’s good enough for tracking, let’s save enough information to run the final

calibration later during analysis” (which now delays us for a year)

But it’s user friendly – all you need to do is add this to
your macro:

Fun4AllServer *se = Fun4AllServer::instance();
MasterRecalibrator *mr = MasterRecalibrator::instance();
se->registerSubsystem(mr);

BEFORE you register your analysis

Histogram OutPut
Root’s pathetic Tdirectory handling makes it unlikely that you
figure out how to create and save histograms on your own reliably
(at least that’s my experience). Use the Fun4AllHistoManager for this

#include “Fun4AllHistoManager.h”
MyAnalysis::MyAnalysis()
{
 HistoManager = new Fun4AllHistoManager("FUN4EXAMPLE Analyzer");
 HistoManager->setOutfileName(“myhistos.root”);
}
MyAnalysys::Init(PHCompositeNode *topNode)
{
 myhist1 = new TH1F(….); // myhist1 should be declared in MyAnalysis.h
 HistoManager->registerHistogram(myhist1);
}

This will save your histograms when executing the Fun4AllServer::End() in
the file “myhistos.root”. If you don’t set the filename it will construct a
name from the name of your analysis module

 Caveat:
This is relatively new and I am not really using this myself yet.
But for the train it seems to work

Create your own TTree
My biased opinion: creating my own root TTrees is a very painful
experience and analyzing them is even worse

But aren’t our node trees saved as root trees? Wouldn’t it be nice to
just piggy back on its very generic mechanism to do this?

It is actually possible – the only thing you need to do is write a
class which contains the variables you want to save (on an event
by event basis, but you can select which event should be saved).
You put this object on the node tree and tell an output manager to
write it out.

Now you’ve got your own root TTree which you can either analyze
it like you analyzed your old tree or you can feed it back into
Fun4All and use another SubsysReco module to analyze it

There will be an example how to do this in
/phenix/WWW/p/draft/pinkenbu/MyOwnTTree

So you finally admitted to yourself that
writing bugfree code is just beyond your

current capability

Welcome to the club, you are in good company. More than half
of last weeks prospective passengers - including me - just joined

And if your code just bombs out on you, don’t use print statements, use
gdb instead which will get you to the problem in no time:
http://www.phenix.bnl.gov/WWW/offline/tutorials/debuggingTips.html

The ever popular and easy to use and understand valgrind (what more
than the line number were your code is doing the dirty deed do you want):
http://www.phenix.bnl.gov/WWW/offline/tutorials/valgrind.html

Here are some short tutorials how to run code checkers:

Insure is more cryptic but it does find problems valgrind cannot pick up:
http://www.phenix.bnl.gov/WWW/offline/tutorials/insure.html

Programming hints

• Stay away from Root, use stl instead. Think of it this way – stl is
widely used (by virtually everybody coding in C++). Compared to that
root has a tiny user community. We have our share of problems, any
root version change turned out to be a nightmare so far.

• Be wary about your input – e.g. you do find negative time of flights
(particles emitted by the emc hitting the beam pipe?)

• Do NOT use pro builds for your analysis. It is not necessary, they are
normally old and just patched up to barely run reconstruction. We put
a huge effort to keep our output readable across software versions and
that’s pretty much all you use from the libraries. Also you want the
latest and greatest in terms of e.g. recalibrators for your analysis. Only
use pro builds if you really need identical tracking (or better identical
bugs), otherwise use the ana build – it’s tagged, new and stable.

Why is it called Fun4AllServer
when it’s not a Server?

The parent of all frameworks is the online monitoring and
there I use a real server to distribute histograms. If it turns
out to be useful and I am really bored, maybe one day I put
the server back into Fun4All

	Fun4All
	This “Tutorial” is NOT a C++ introduction
	The basic Flow of a PHENIX Analysis
	Structure of Fun4All
	Node Tree
	Node Tree for real
	It’s all about choices - Input
	It’s all about choices - Output
	Your Analysis Module
	Okay, How do I navigate the Node Tree which is in every argument????
	Blah Blah Blah – Very nice, but how do I run the show?
	Master Recalibrator
	Histogram OutPut
	Create your own TTree
	So you finally admitted to yourself that writing bugfree code is just beyond your current capability
	Programming hints
	Why is it called Fun4AllServer when it’s not a Server?

