Photon Production at NLO in Hot QCD

Derek Teaney
SUNY Stony Brook and RBRC Fellow

STONY
BRAWSK

STATE UNIVERSITY OF NEW YORK

e Photons — In collaboration with Jacopo Ghiglieri, Juhee Hong, Aleksi Kurkela, Egang Lu, Guy Moore,

arXiv:Almost.Done



Perturbation theory can work for thermodynamic quantities! Let’s use it!

e HTLpt from Andersen, Su, Strickland. Dimensional Reduction/EQCD — the Finish Group
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Want to compute transport with similar precision at high T



Basic picture of weakly coupled plasma

Hard particle modes, P ~ T

& Soft field modes, P ~ mp

1. Strong coupling — no quarks and gluons at scale 1’
2. Weak coupling — quarks and gluons quasi-particles at scale g1°

3. Intermediate coupling — no strict quark and gluon quasi-particles at scale g'I’

- This is what these perturbative schemes are doing



Motivation

e This calculation uses LO order photon production rates
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(Turbide, Rapp, Gale)

We want to compute
this rate at NLO

Thermal rate is
dominant for a
certain momentum
range

Direct photons are measured, but this is not my real motivation ...



My real motivations:

1. Energy loss.

2. The shear viscosity.



My real motivation. Energy loss at sub-asymptotic energies is important:

1. Kinematic constraints limit the agreement between energy loss formalisms
— Higher Twist versus AMY versus W-DGLV

— See the report of the Jet Collaboration: arXiv:1106.1106

2. Finite energy leads to large angle emission outside of radiative loss formalism
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As the bremmed energy gets lower and lower, the angle A@ gets larger and larger,

limiting the agreement



A sample plot from DGLYV in the Jet Collaboration Report:
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This is what is going on:

E - bit
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This gluon is soft and not collinear




Radiative and Collisional Loss:

Collisional Energy Loss: dZ—(’Lg’(ﬁ(,u)

. Features:
E - bit

= 1. Plasmaisexcited: T' < 1 < F

2. Hard particle in hard particle out

Features:

1. Plasmaisexcited: T' < u < E

(1—2)F
f Ad 2. Hard particle in, two hard part. out

S E - We require t £/ > 7!

As the bremmed energy gets lower and lower, the angle A8 gets larger and larger



Radiative and Collisional Loss

NLO

Soft Radiative Loss: dp&—‘f(u)

Features:
E - bit

e

1. Plasmaisexcited: T' < u < E

2. Hard particle in, one hard particle

out

This is higher order correction to the collisional E-loss rate
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My real motivations:

v' Energy loss

2. The shear viscosity



My real motivation. Shear viscosity and the kinetics of weakly coupled QGP

1. Hard Collisions: 2 < 2
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3. Brem: 1 < 2

e random walk induces collinear bremsstrhalung

NLO involves corrections to these processes and the relation between them

But shear viscosity is too hard . . .



My real motivations:

v' Energy loss
v" The shear viscosity

Photon production at NLO is a good warm-up calculation.

Lets do it!
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The photon emission rate at weak coupling:

e The rate is function of the coupling coupling constant and k/T:
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Three rates for photon production at Leading Order

1. Hard Collisions —a 2 <> 2 processes
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g*CrT?/4  fermidist.

2. Collinear Bremsstrhalung —a 1 <+ 2 processes
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@ LPM + AMY and all that stuff!



3. Quark Conversions — 1 <+ 1 processes (analogous to drag)
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O(g) Corrections to Hard Collisions, Brem, Conversions:
1. No corrections to Hard Collisions:

2. Corrections to Brem:

(a) Small angle brem. Corrections to AMY coll. kernel. (Caron-Huot)
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(b) Larger angle brem. Include collisions with energy exchange, ¢— ~ g1

%Q—((fﬁq_,ﬂ)—(ﬂ, g7, gT)

Crolgl] = > A complicated but analytic formula




3. Corrections to Conversions:

K K

or

AVAV,

e Doable because of HTL sum rules (light cone causality) Simon Caron-Huot

e Gives a numerically small and momentum indep. contribution to the NLO rate

Full results depend on all these corrections.

These rates smoothly match onto each other as the kinematics change.



NLO Results: FLO-|—NLO ~ LO + 93 log(l/g) + 93
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Corrections are small and £ independent



The different contributions at NLO (conversions are not numerically important)
large-6 radiation suppressed at NLO

small-0 radiation enhanced at NLO
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The calculation



Semi-collinear radiation — a new kinematic window

2 — 2 processes

semi-collinear radiation

collinear radiation

The semi-collinear regime interpolates between brem and collisions



Matching collisions to brem

e When the gluon is hard the 2 <+ 2 collision:

is physically distinct from the wide angle brem

&




Matching collisions to brem

e When the gluon becomes soft (a plasmon), the 2 <+ 2 collision:
m > § ~
)F

is not physically distinct from the wide angle brem

@MM)QN@

Need both processes

— For harder gluons, ¢g— — I, this becomes a normal 2 — 2 process.

— For softer gluons, ¢= — gQT, this smoothly matches onto AMY.



Matching collisions to brem

e When the gluon becomes soft (a plasmon), the 2 <+ 2 collision:
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is not physically distinct from the wide angle brem

@MM)QN@

Need both processes

— For harder gluons, ¢g— — I, this becomes a normal 2 — 2 process.

— For softer gluons, ¢~ — gQT, this smoothly matches onto AMY.



e The AMY collision kernel C'|q | | involves Aurenche, Gelis, Zakarat
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e We need a finite g~ = 0 E' generalization:
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Wider angle emissions can be included by a “simple” modified collision kernel



Matching between brem and conversions

2 — 2 Processes
semi-collinear radiation

collinear radiation

What happens when the
final quark is sott?

When the quark becomes soft need to worry about conversions.



Matching between brem and conversions

e When the final quark line is hard, the brem process :

is physically distinct from the conversion process:

=

K



Matching between brem and conversions

e When the final quark line becomes soft, the brem process :
P K~P

g | n< zP

is not physically distinct from the conversion process
P K~P

2P < pu

Separately both processes depend on the separation scale, it ~ g1, but . . .
the  dep. cancels when both rates are included

e The LO small-6 and large-6 brem rates depend linearly and logarithmically on an

infrared separation scale, (.

The NLO conversion rate will depend on a UV cutoff 1+ and cancels this dependence



Brem rates with a soft quark

P

e Small angle brem
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The conversion rate should cancel this dependence on i



Matching between brem and conversions

2 — 2 Processes
semi-collinear radiation

collinear radiation

What happens when the
final quark is sott?

When the quark becomes soft need to worry about conversions.



Computing the conversion rate with sum-rules (LO): (see also Bodeker)
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Computing the conversion rate at NLO with sum-rules:
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e At NLO we have only to replace m2_, — m?2, + dm?2
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finite + UV logarithmic divergence in p linear UV divergence in p

The UV divergences of conversion rate match with the IR divergences of large and

small angle brem giving a finite answer



Conclusion

e The result again
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e All of the soft sector buried into a few coefficients, C'|q | , 0 E| and §envrt
— Can we compute these non-perturbatively ?

— Can constrain experimentally with medium-energy jets £/ ~ 30 = 50 Gev.

Many things can be computed next (e.g. shear viscosity and e-loss)





