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We investigate the relative size of various twist-3 quark-gluon correlation functions relevant to single

transverse spin asymmetries (SSAs) in a quark-diquark model of the nucleon. We calculate the quark-

gluon correlation function Tq;Fðx; xÞ that is responsible for the gluonic pole contribution to the SSAs, as

well as Tq;Fð0; xÞ and T�q;Fð0; xÞ responsible for the fermionic pole contributions. We find in both cases of

a scalar diquark and an axial-vector diquark that at the first nontrivial order only the Tq;Fðx; xÞ is finite
while all other quark-gluon correlation functions vanish. Using the same model, we evaluate quark Sivers

function and discuss its relation to the Tq;Fðx; xÞ. We also discuss the implication of our finding to the

phenomenological studies of the SSAs.
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I. INTRODUCTION

The phenomenon of single transverse spin asymmetry

(SSA), AN � ð�ð ~S?Þ � �ð� ~S?ÞÞ=ð�ð ~S?Þ þ �ð� ~S?ÞÞ,
defined as the ratio of the difference and the sum of the

cross sections when the single transverse spin vector ~S? is
flipped, was first observed in the hadronic�0 production at
Fermilab in 1976 as a surprise [1]. Large SSAs, as large as
30%, have been consistently observed in various experi-
ments involving one polarized hadron at different collision
energies, and have attracted tremendous interest from both
experimental and theoretical sides in recent years [2]. The
size of the observed SSAs presented a challenge to the
early QCD calculation [3]. As a consequence of the parity
and time-reversal invariance of the strong interaction, the
SSAs in high energy collisions can be directly connected to
the transverse motion of quarks and gluons inside the
transversely polarized hadron. The measurement of SSAs
provides an excellent opportunity to probe a new domain of
QCD dynamics. The understanding of the physics behind
the measured asymmetries should have a profound impact
on our knowledge of strong interaction and hadron
structure.

Two complementary QCD-based approaches have been
proposed to analyze and to explore the physics behind the
measured SSAs: the transverse momentum dependent
(TMD) factorization approach [4–10] and the collinear
factorization approach [11–15]. Both approaches have
been applied extensively to phenomenological studies
[16–24]. The TMD factorization approach is more suitable
for evaluating the SSAs of scattering processes with two
very different momentum transfers, Q1 � Q2 * �QCD.

Having one large observed scale, Q1 � �QCD, is neces-

sary for using perturbative QCD and the TMD factoriza-
tion approach although it is not sufficient [25–28]. For
observables for which the TMD factorization is valid,
this approach has an advantage for directly probing active
parton’s transverse motion at the scale, OðQ2Þ, inside a
polarized hadron in the form of TMD parton distribution
functions (PDFs). On the other hand, the collinear factori-
zation approach is more relevant to the SSAs of scattering
cross sections with all observed momentum transfers Q �
�QCD. In the QCD collinear factorization approach, the

leading power contribution to the cross sections in the 1=Q
expansion cancels in evaluating the asymmetry because of
the parity and time-reversal invariance of the theory.
Therefore, the asymmetry directly probes the correlation
of quarks and gluons inside a polarized nucleon in the form
of the twist-3 quark-gluon and trigluon correlation func-
tions [12]. Although the two approaches each have their
own kinematic domain of validity, they describe the same
physics and are consistent with each other in the regime
where they both apply [29,30].
In both TMD and collinear factorization approaches of

QCD, the size of calculated SSAs is proportional to some
nonperturbative functions: the TMD PDFs and the twist-3
three-parton correlation functions, respectively. The pre-
dictive power of both approaches relies on the validity of
the respective factorization and the knowledge of these
nonperturbative functions [31,32]. QCD perturbation the-
ory could be used to study the quantum evolution of these
functions from one perturbative scale to another where
these functions were probed [33–36]. But, the absolute
normalizations of these functions or the boundary condi-
tions—the input functions for solving the evolution equa-
tions have to be extracted from data of measured
asymmetries. With the recent measurements of SSAs
[37–39], we have gained valuable information on the
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TMD PDFs [40] and twist-3 correlation functions [22].
Although precise data from future experiments could cer-
tainly help fix these nonperturbative functions, a good
model calculation of these unknown functions could pro-
vide important insight into the mechanisms for generating
the observed novel asymmetries and valuable guideline to
the relative importance and size of various functions. In
this paper, we present our calculations of all twist-3 quark-
gluon correlation functions relevant to the SSAs in the
collinear factorization approach in a quark-diquark model
of the nucleon [6,41]. We calculate these quark-gluon
correlation functions with both scalar and axial-vector
diquarks. We also evaluate in the same model the quark
Sivers function, the spin dependent part of the TMD quark
distribution, and discuss its relation to the twist-3 quark-
gluon correlation function, Tq;Fðx; xÞ [9].

In order to generate a nonvanishing SSA in high energy
hadronic collisions, one needs to generate a parton-level
spin flip and a phase difference between the scattering
amplitude and its complex conjugate. In the QCD collinear
factorization approach to the SSAs, the spin flip at the hard
collision was achieved by the interference between an
active single parton state and an active two-parton com-
posite state of the scattering amplitude; and the phase
difference was generated by the interference between the
real part and the imaginary part of the short-distance
partonic scattering amplitude [12]. We obtain the leading
contribution to the imaginary part of the partonic scattering
amplitude by taking the unpinched pole of the partonic
scattering amplitude [11,12]. It is the interference between
the single active parton state and the two-parton composite
state that requires the calculated SSAs to be proportional to
the twist-3 quark-gluon correction functions, Tq;Fðx1; x2Þ
and T�q;Fðx1; x2Þ, and trigluon correlation functions,

Tðf;dÞ
G;F ðx1; x2Þ and Tðf;dÞ

�G;Fðx1; x2Þ, convoluted with corre-

sponding partonic scattering through two independent mo-
mentum fractions of the three active partons, x1 and x2
[33,36]. Taking the pole of the parton scattering amplitude
effectively fixes one of the two momentum fractions.
Depending on the number of observed hard momentum
scales, the partonic scattering amplitude has different pole
structure. For cross sections with a single observed hard
scale, such as pT of single inclusive pion production in
hadronic collisions, the leading pole contribution is from
taking the residue of the pole, which is effectively setting
the momentum fraction of one of the three active partons to
zero [11,12]. This contribution is often referred as the soft-
pole contribution. The so-called gluonic (or fermionic)
pole contribution refers to the situation when the active
gluon (or (anti)quark) momentum fraction was set to zero.
For cross sections with more than one observed hard scale,
such as inclusive pion production in lepton-hadron deep
inelastic scattering when both pion momentum pT and
virtual photon invariant mass Q are large, the leading
pole contribution could also come from the situation

when all active parton momentum fractions are finite,
known as the hard-pole contribution [42,43]. In this paper,
we present the model calculation only for quark-gluon
correlation functions corresponding to the soft-pole con-
tribution to the SSAs, which include Tq;Fðx; xÞ and

T�q;Fðx; xÞ for the gluonic pole contribution, and

Tq;Fð0; xÞ, T�q;Fð0; xÞ, Tq;Fðx; 0Þ, and T�q;Fðx; 0Þ for the

fermionic pole contribution.
In general, the calculated SSAs of cross sections with

one observed hard momentum scale receive contributions
from both the gluonic and fermionic poles, and the partonic
hard parts for these two contributions often have the simi-
lar size [22,24]. On the other hand, the quark-gluon corre-
lation functions corresponding to the gluonic pole and
fermionic pole contribution represent very different dy-
namical structure inside the polarized proton. For the
gluonic pole contribution, the quark-gluon correlation
functions, Tq;Fðx; xÞ and T�q;Fðx; xÞ, represent the quantum
interference between a quark state of momentum fraction x
and a quark-gluon composite state of the same momentum
fraction with the quark carrying all the momentum fraction
x, while for the fermionic pole contribution, the total
momentum fraction of the quark-gluon composite state is
carried by the gluon. The relative size of these two types of
quark-gluon correlation functions certainly provides inter-
esting information on the dynamical structure of a polar-
ized proton.
In terms of the simple quark-diquark model of the

nucleon [6,41], we find in both cases of a scalar diquark
and an axial-vector diquark that at the first nontrivial order,
all quark-gluon correlation functions corresponding to the
fermionic pole contribution, Tq;Fð0; xÞ, T�q;Fð0; xÞ,
Tq;Fðx; 0Þ, and T�q;Fðx; 0Þ, vanish. For those functions cor-
responding to the gluonic pole contribution, Tq;Fðx; xÞ is
finite while T�q;Fðx; xÞ ¼ 0 which is consistent with the

result of symmetry argument [33]. Our results, although
from a model calculation, indicate that the fermionic pole
contribution to the SSAs is likely to be less important than
the gluonic pole contribution. This conclusion seems to be
consistent with a general expectation that a quark-gluon
state with the quark carrying all of its momentum is more
likely than a quark-gluon state with the gluon carrying all
of its momentum to interfere with a quark state of the same
momentum [12]. Our finding could help streamline the
phenomenological studies of the SSAs by starting with a
much smaller number of nonperturbative twist-3 correla-
tion functions.
The rest of our paper is organized as follows. In Sec. II,

we introduce the operator definition of all twist-3 quark-
gluon correlation functions and discuss their symmetry
properties. In Sec. III, we introduce the quark-diquark
model of the nucleon and its Feynman rules for both cases
of a scalar diquark and an axial-vector diquark, and present
our calculations for the twist-3 quark-gluon correlation
functions relevant to both gluonic and fermionic pole con-
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tributions to the SSAs. In terms of the same nucleon model,
we calculate the quark Sivers functions in Sec. IV, and
discuss the connection between the twist-3 quark-gluon
correlation functions and the TMD parton distribution
functions. Finally, we give our summary and conclusions
in Sec. V.

II. THE TWIST-3 QUARK-GLUON CORRELATION
FUNCTIONS

The twist-3 three-parton correlation functions in the
QCD collinear factorization approach to the SSAs could
be represented by the cut forward scattering diagram in
Fig. 1 with proper cut vertices [33]. These correlation
functions measure the net effect of quantum interference
between two scattering amplitudes of the transversely
polarized proton: one with a single active parton and the
other with two active partons, participating in the short-
distance hard scattering. A complete set of twist-3 three-
parton correlation functions relevant to the SSAs has been
constructed in Refs. [33,36], which includes two indepen-
dent quark-gluon correlation functions, Tq;Fðx1; x2Þ and

T�q;Fðx1; x2Þ. They could be derived from the following

quark-gluon matrix element of a transversely polarized
hadron [14],

M�ðx1; x2; sTÞ ¼
Z dy�1 dy�2

2�
eix1p

þy�
1
þiðx2�x1Þpþy2

� hp; sTj �c qð0ÞgF�þðy�2 Þc qðy�1 Þjp; sTi
¼ 1

2
½ �6n��sTn �nTq;Fðx1; x2Þ

þ �5 �6nis�TT�q;Fðx1; x2Þ þ � � ��; (1)

where the proper gauge links have been suppressed and
xi ¼ ki � n=p � n with i ¼ 1, 2 are two independent parton
momentum fractions. �n� ¼ ½1þ; 0�; 0?� and n� ¼
½0þ; 1�; 0?� are two lightlike vectors with �n � n ¼ 1, and
the ellipsis represents terms at twist-four and higher. From
Eq. (1), we derive the expressions for the relevant quark-
gluon correlation functions [33],

Tq;Fðx1; x2Þ ¼
Z dy�1 dy

�
2

4�
eix1p

þy�
1
þiðx2�x1Þpþy2

� hp; sTj �c qð0Þ�þ½�sT�n �ngFþ
� ðy�2 Þ�

� c qðy�1 Þjp; sTi; (2)

T�q;Fðx1; x2Þ ¼
Z dy�1 dy

�
2

4�
eix1p

þy�1 þiðx2�x1Þpþy2

� hp; sTj �c qð0Þ�þ�5½is�TgFþ
� ðy�2 Þ�

� c qðy�1 Þjp; sTi: (3)

From parity and time-reversal invariance, these two func-
tions have the following symmetry property under the
exchange of the two arguments x1 $ x2 [12,33]:

Tq;Fðx1; x2Þ ¼ Tq;Fðx2; x1Þ;
T�q;Fðx1; x2Þ ¼ �T�q;Fðx2; x1Þ:

(4)

The leading order gluonic pole contribution to the SSAs is
connected to the diagonal quark-gluon correlation func-
tions, Tq;Fðx; xÞ and T�q;Fðx; xÞ [11,12]. On the other hand,
the leading order fermionic pole contribution to the SSAs
is connected to the off-diagonal quark-gluon correlation
functions, Tq;Fð0; xÞ and T�q;Fð0; xÞ, or Tq;Fðx; 0Þ and

T�q;Fðx; 0Þ [11,12]. From Eq. (4), we have T�q;Fðx; xÞ ¼
0. In the next section, we calculate these correlation func-
tions in the quark-diquark model of the nucleon, and test
the symmetry properties in Eq. (4).

III. MODEL CALCULATION OF TWIST-3
QUARK-GLUON CORRELATION FUNCTIONS

In this section, we calculate the twist-3 quark-gluon
correlation functions relevant to the gluonic and fermionic
pole contributions to the SSAs in the quark-diquark model
of the nucleon [6,41]. We consider two possible situations
in which the spectator diquark is either a scalar particle or
an axial-vector particle.

A. The quark-diquark model of the nucleon

In the quark-diquark model of the nucleon [6,41], the
nucleon of mass M consists of a quark of mass m and a
diquark spectator of massMs. The interaction between the
nucleon, the quark, and the diquark is given by the follow-
ing Feynman rule for the vertex in Fig. 2(a),

i�sFsðk2Þ scalar diquark; (5)

i
�vffiffiffi
2

p ���5Fvðk2Þ axial-vector diquark; (6)

where �s;v represent the pointlike interaction strength with

subscripts s and v for a scalar and an axial-vector diquark,
respectively, Fs;vðk2Þ are suitable form factors as a function

of k2—invariant mass square of the quark. Fs;vðk2Þ ¼ 1 is

for a pointlike vertex interaction. As explained later, a

FIG. 1 (color online). The Feynman diagram representation for
the twist-3 quark-gluon correlation functions, where ki � xip
with i ¼ 1, 2. Contracting the three active partons with different
cut vertices leads to different quark-gluon correlation functions
[33].
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properly chosen form factor could help control the ultra-
violet behavior of the calculated quark-gluon correlation
functions. The Feynman rule for the coupling between the
gluon and the diquark in Fig. 2(b) is given by

igsð2p� 2k� qÞ� scalar diquark; (7)

igvV
���ðq; p� k� q; k� pÞ axial-vector diquark;

(8)

with the coupling strength gs and gv for a scalar and an
axial-vector diquark, respectively. Here V���ðq; p� k�
q; k� pÞ is given by [41]

V���ðq; p� k� q; k� pÞ ¼ g��ð2q� pþ kÞ�
þ g��ð2p� 2k� qÞ�
þ g��ðk� p� qÞ�: (9)

The Feynman rule for a scalar diquark propagator is the
same as that of a normal scalar particle, while the Feynman
rule for the axial-vector diquark propagator in Fig. 2(c) is
given by

i

k2 �M2
s

d�	ðk;MsÞ; (10)

where the polarization tensor d�	ðk;MsÞ has the following
form [41]

d�	ðk;MsÞ ¼ �g�	 þ k�n	 þ k	n�

n � k �M2
sn

�n	

ðn � kÞ2 ; (11)

which has the property, k�d
�	ðk;MsÞ ¼ 0 when k2 ¼ M2

s .
As we will show below, the twist-3 quark-gluon corre-

lation functions calculated with the pointlike coupling
between the nucleon, the quark, and the spectator diquark,
Fs;vðk2Þ ¼ 1, have logarithmic ultraviolet divergences

when k2 ! 1. Since we are mainly interested in the
long-distance behavior of the quark-gluon correlation
functions, we could choose a proper form factor to elimi-
nate the divergence from the region of phase space where
k2 � M2, the mass scale of the nucleon, while preserve the
dynamics at k2 �M2. Several choices for the form factor

were introduced and discussed in Ref. [41]. In our calcu-
lation below, we assume that the form factor for a scalar
diquark is the same as that for an axial-vector diquark, and
choose a dipolar form factor [41]

Fðk2Þ ¼ Fsðk2Þ ¼ Fvðk2Þ ¼ k2 �m2

½k2 ��2
s�2

�2
s ; (12)

where �2
s * M2 is an ultraviolet cutoff. Note that in

Eq. (12) we multiplied the dipolar form factor in
Ref. [41] by an extra �2

s so that the form factor has the
right dimension. Such a difference by a constant factor
does not affect any of our conclusions derived below. We
will also demonstrate below that the introduction of this
form factor smoothly suppresses the influence of the ultra-
violet region of k2? or k2 without affecting the main con-

clusions of this paper.

B. Calculation with a scalar diquark

All quark-gluon correlation functions could be repre-
sented by the same cut forward scattering diagram in
Fig. 1. The difference of various quark-gluon correlation
functions is from the difference in cut vertices contracted
to the three active partons in the diagram [33]. The form of
cut vertices for both Tq;Fðx1; x2Þ and T�q;Fðx1; x2Þ as well
as the trigluon correlation functions is gauge dependent
and was derived in Ref. [33]. In this paper, we work in the
light-cone gauge. For x1 � xþ y and x2 � x, the cut
vertices are given by [33]

V LC
q;F ¼ �þ

2pþ 2�g


�
x� kþ

pþ

�
y


�
y� qþ

pþ

�
ði�sT�n �nÞ

� ½�g���Cq; (13)

V LC
�q;F ¼ �þ�5

2pþ 2�g


�
x� kþ

pþ

�
y


�
y� qþ

pþ

�
ð�s

�
T Þ

� ½�g���Cq (14)

where g with g2 ¼ 4��s is the strong coupling constant
included in the definition in Eq. (1), Cq is the fermionic

color contraction factor given by [33]

ðCqÞcij ¼ ðtcÞij; (15)

with quark and gluon color indices, i, j ¼ 1; 2; 3 ¼ Nc and
c ¼ 1; 2; . . . ; 8 ¼ N2

c � 1, respectively, and tc are the gen-
erators of the fundamental representation of SUð3) color.
The contribution to the twist-3 quark-gluon correlation

functions Tq;Fðxþ y; xÞ and T�q;Fðxþ y; xÞ at the lowest

nontrivial order is given by the Feynman diagrams in
Figs. 3 and 4. As we will explain later, the diagram in
Fig. 4 does not contribute to the twist-3 correlation func-
tions that we are studying here. We first study these corre-
lation functions with a scalar diquark. Applying the cut
vertex in Eq. (13) to the diagram in Fig. 3, we obtain

FIG. 2. Feynman diagrams to define the Feynman rules in the
quark-diquark model of the nucleon: (a) vertex links the nucleon,
the quark, and the diquark, (b) interaction vertex between the
gluon and the diquark, and (c) the diquark propagator. The
diquark could be a scalar particle or an axial-vector particle.
The Lorentz indices are for the gluon and the axial-vector
diquark.
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TðsÞ
q;Fðxþ y; xÞ ¼ �NcCF

g�2
sgs�

2

pþ
Z d4k

ð2�Þ4
d4q

ð2�Þ4 

�
x� kþ

pþ

�
y


�
y� qþ

pþ

�

ððp� kÞ2 �M2

s Þ�sT�n �nð2p� 2k� qÞ�d��ðqÞ

� Tr½�þðk6 þ q6 þmÞðp6 þMÞ�5s6 Tðk6 þmÞ� 1

k2 �m2 � i�

1

q2 þ i�

1

ðkþ qÞ2 �m2 þ i�

� 1

ðp� k� qÞ2 �M2
s þ i�

Fðk2ÞFððkþ qÞ2Þ; (16)

where � ¼ 0þ represents a small positive parameter, the superscript (s) indicates the scalar diquark, and the gluon
polarization tensor d��ðqÞ is given by

d��ðqÞ ¼ �g�� þ q�n� þ q�n�
q � n : (17)

Performing the integration over kþ, k�, and qþ by using the three 
-functions in Eq. (16), we obtain

TðsÞ
q;Fðxþ y; xÞ ¼ �NcCF

g�2
sgs

16�pþ
Z d2q?

ð2�Þ2
d2k?
ð2�Þ2

1

k2? þ L2
sðm2Þ

Z dq�

2�
�sT�n �nð2p� 2k� qÞ�ðqþg�� � q�n�Þ

� Tr½�þðk6 þ q6 þmÞðp6 þMÞ�5s6 Tðk6 þmÞ� 1

q2 þ i�

1

ðkþ qÞ2 �m2 þ i�

1

ðp� k� qÞ2 �M2
s þ i�

� Fðk2ÞFððkþ qÞ2Þ; (18)

where

k2 ¼ m2 � 1

1� x
½k2? þ L2

sðm2Þ� (19)

with L2
sðm2Þ given by

L2
sðm2Þ ¼ xM2

s þ ð1� xÞm2 � xð1� xÞM2 (20)

independent of q�.
The integration over q� is crucial and is done by taking

the residue of relevant pole(s) of the integrand in Eq. (18),
which provides the necessary phase for a real quark-gluon
correlation function Tq;Fðxþ y; xÞ. Since we are interested
in the leading gluonic and fermionic pole contribution to
the SSAs, we examine below the pole structure of the
integrand in Eq. (18) at y ¼ 0 (gluonic pole) and xþ y ¼
0 (fermionic pole) while x > 0. From

ðp� k� qÞ2 �M2
s þ i� ¼ �2ð1� x� yÞpþq�

� yðk2? þM2
s Þ

1� x
� 2k? � q?

� q2? þ i� ¼ 0; (21)

and xþ y < 1, we derive the location of the corresponding
pole at

q� ¼� 1

2ð1� x� yÞpþ

�
yðk2?þM2

s Þ
1� x

þ 2k? �q?þq2?

�

þ i�; (22)

which is in the upper half plane of the q�. This pole
survives and stays in the upper half plane at both limits:
y ¼ 0 (gluonic pole) and xþ y ¼ 0 (fermionic pole).
However, the potential poles from q2 þ i� ¼ 0 and ðkþ
qÞ2 �m2 þ i� ¼ 0 are sensitive to these two limits. For
the quark-gluon correlation functions relevant to the lead-
ing fermionic pole contribution to the SSAs, we consider
the pole structure at xþ y ¼ 0while y < 0 since x > 0 and
find that

q2 þ i� ¼ 2ypþq� � q2? þ i� ¼ 0 (23)

provides a pole at

q� ¼ � q2?
2jyjpþ þ i� (24)

FIG. 4 (color online). Feynman diagram at the first nontrivial
order that could potentially contribute to the twist-3 quark-gluon
correlation functions.

FIG. 3 (color online). The lowest order Feynman diagram for
twist-3 quark-gluon correlation functions in the quark-diquark
model.
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in the upper half plane of the q�, while

ðkþ qÞ2 �m2 þ i� ¼ 2ðxþ yÞpþðkþ qÞ� � ðk? þ q?Þ2
�m2 þ i�

¼ �ðk? þ q?Þ2 �m2 þ i� (25)

does not contribute to any pole in the q�-integration. That
is, when xþ y ¼ 0 and x > 0, the integrand of
q�-integration in Eq. (18) has two poles from ðp� k�
qÞ2 �M2

s þ i� ¼ 0 and q2 þ i� ¼ 0 and both of them are
in the upper half plane of q�. Since the integration dq� in
Eq. (18) is sufficiently converging when jq�j ! 1, the q�
integration vanishes by closing the q�-contour through the
lower half plane. In conclusion, TðsÞ

q;Fð0; xÞ ¼ 0 from this

leading order calculation with a scalar diquark, so as

TðsÞ
q;Fðx; 0Þ ¼ 0, which can be derived by an explicit calcu-

lation or the symmetry property Tq;Fðx; 0Þ ¼ Tq;Fð0; xÞ.
Now we turn to the limit at y ¼ 0, which is relevant to

the leading gluonic pole contribution to the SSAs. At y ¼
0, the pole structure of the q�-integration in Eq. (18)
changes. At y ¼ 0,

ðkþ qÞ2 �m2 þ i� ¼ 2xpþq� þ x

1� x
½ð1� xÞM2

� k2? �M2
s � � ðk2? þ q?Þ2 �m2

þ i� ¼ 0; (26)

leads to a pole at

q� ¼ 1

2xpþ ½ðk2? þ q?Þ2 þm2� � 1

2ð1� xÞpþ ½ð1� xÞM2

� k2? �M2
s � � i� (27)

in the lower half plane of q�, while

q2 þ i� ¼ �q2? þ i� (28)

is independent of q�. Therefore, for the quark-gluon cor-
relation functions relevant to the leading gluonic pole
contribution to the SSAs, the integration of dq� in
Eq. (18) has two poles from ðp� k� qÞ2 �M2

s þ i� ¼
0 and ðkþ qÞ2 �m2 þ i� ¼ 0 with one in upper and one
in lower half plane of q�. By closing the q�-contour in
either the upper or the lower half plane, we obtain

TðsÞ
q;Fðx; xÞ ¼

NcCFg�
2
sgs

4�
ð1� xÞðmþ xMÞ

Z d2k?
ð2�Þ2

d2q?
ð2�Þ2

� ½q2? � ðq? � s?Þ2�Fðk2ÞFððkþ qÞ2Þ
q2?½k2? þ L2

sðm2Þ�½ðk? þ q?Þ2 þ L2
sðm2Þ� ;

(29)

where k2 is given in Eq. (19) and

ðkþ qÞ2 ¼ m2 � 1

1� x
½ðk? þ q?Þ2 þ L2

sðm2Þ� (30)

with L2
sðm2Þ given in Eq. (20).

The integration over the transverse momenta in Eq. (29)
depends on the choice of the form factor. If we set Fðk2Þ ¼
Fððkþ qÞ2Þ ¼ 1 for the pointlike interaction between the
nucleon, the quark, and the spectator diquark, we obtain
after integrating over d2k?,

TðsÞ
q;Fðx; xÞjpoint-like ¼

NcCFg�
2
sgs

16�2
ð1� xÞðmþ xMÞ

Z 1

0
d�

Z d2q?
ð2�Þ2

q2? � ðq? � s?Þ2
q2?½�ð1� �Þq2? þ L2

sðm2Þ�

¼ NcCFg�
2
sgs

16�2
ð1� xÞðmþ xMÞ

Z d2q?
ð2�Þ2

1

q?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? þ 4L2

sðm2Þ
q ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? þ 4L2

sðm2Þ
q

þ q?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? þ 4L2

sðm2Þ
q

� q?
; (31)

which has the logarithmic ultraviolet divergence from the
region jq?j ! 1. Since we are interested in the dynamics
at the hadronic scale, we could use the dipolar form factor
in Eq. (12) to remove the ultraviolet divergence. Using
Eqs. (19) and (30), we have

Fðk2ÞFððkþ qÞ2Þ ¼ ð1� xÞ2ð�2
sÞ2

k2? þ L2
sðm2Þ

½k2? þ L2
sð�2

sÞ�2

� ðk? þ q?Þ2 þ L2
sðm2Þ

½ðk? þ q?Þ2 þ L2
sð�2

sÞ�2
; (32)

thus from Eq. (29),

TðsÞ
q;Fðx;xÞjdipolar¼

NcCFg�
2
sgs

8ð2�Þ2 ð1�xÞ3ðmþxMÞ ð�2
sÞ2

L2
sð�2

sÞ
�
Z d2k?
ð2�Þ2

1

½k2?þL2
sð�2

sÞ�2

¼NcCFg�
2
sgs

16ð2�Þ3 ð1�xÞ3ðmþxMÞ
�

�2
s

L2
sð�2

sÞ
�
2
;

(33)

where L2
sð�2

sÞ is given in Eq. (20) with m2 replaced by the
cutoff scale �2

s . Note that the form factor in Eq. (32)
suppresses the ultraviolet contribution to the integration
in Eq. (29) without altering the pole structure of the origi-
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nal diagram. Therefore, our general conclusion on
TðsÞ
q;Fð0; xÞ ¼ TðsÞ

q;Fðx; 0Þ ¼ 0 remains whether we use the
dipolar form factor or not.

The calculation for T�q;Fðxþ y; xÞ is identical to that of

Tq;Fðxþ y; xÞ except the cut vertex is replaced by the one

in Eq. (14). Since the pole structure of the diagram is
exactly the same, we obtain the same result for correlation
functions relevant to the fermionic pole contribution,

TðsÞ
�q;Fð0; xÞ ¼ �TðsÞ

�q;Fðx; 0Þ ¼ 0: (34)

From the symmetry property in Eq. (4), we have ex-

pected the diagonal correlation function TðsÞ
�q;Fðx; xÞ rele-

vant to the gluonic pole contribution to vanish. As a
consistent test of our model calculation, we verify this
result explicitly as follows. Following the same procedure

used to evaluate TðsÞ
q;Fðx; xÞ above, we use first the


-functions to integrate over kþ, k�, qþ, then the pole
structure to integrate over q� to get the necessary phase,
and we obtain

TðsÞ
�q;Fðx;xÞ¼

NcCFg�
2
sgs

4�
ð1�xÞðmþxMÞ

Z d2k?
ð2�Þ2

d2q?
ð2�Þ2

�q?�s?½2k?�s?þq?�s?�Fðk2ÞFððkþqÞ2Þ
q2?½k2?þL2

sðm2Þ�½ðk?þq?Þ2þL2
sðm2Þ� :

(35)

We first consider the pointlike interaction case setting
Fðk2ÞFððkþ qÞ2Þ ¼ 1. Using the Feynman parametriza-
tion to combine the k? dependent denominator, we obtain

TðsÞ
�q;Fðx; xÞjpoint-like

¼ NcCFg�
2
sgs

4�
ð1� xÞðmþ xMÞ

Z d2q?
ð2�Þ2

d2‘?
ð2�Þ2

�
Z 1

0
d�

ð1� 2�Þðq? � s?Þ2
q2?½‘2? þ �ð1� �Þq2? þ L2

sðm2Þ�2 ¼ 0: (36)

Here, the second line is due to the fact that the numerator of
the � integral is antisymmetric under � $ 1� �while the
denominator and the integration limits are symmetric.
From Eq. (32), it is clear that the inclusion of the dipolar
form factor does not change the main feature of the
�-dependence of the combined denominator,

TðsÞ
�q;Fðx; xÞjdipolar ¼

NcCFg�
2
sgs

4�
ð1� xÞ3ðmþ xMÞð�2

sÞ2

�
Z d2q?

ð2�Þ2
d2‘?
ð2�Þ2

Z 1

0
d�

� 3!�ð1� �Þð1� 2�Þðq? � s?Þ2
q2?½‘2? þ �ð1� �Þq2? þ L2

sðm2Þ�4
(37)

which also vanishes from the symmetry of the d� integra-

tion. We thus verify that TðsÞ
�q;Fðx; xÞ ¼ 0.

To conclude this subsection on the calculation with a
scalar diquark, we make a comment on the contribution to
the quark-gluon correlation function from the diagram in
Fig. 4. In order to get the SSAs, as discussed earlier, we
need a spin flip between the two partonic states on the
opposite side of the cut in the diagram in Fig. 4. Since the
quark-gluon composite state on the left was initiated from a
single quark state, the spin flip contribution can only come
from the mass term of the quark. Therefore, the contribu-
tion of the diagram in Fig. 4 to the quark-gluon correlation
functions relevant to the SSAs is expected to be propor-
tional to the quark mass and is therefore small. Our explicit
calculation shows that the diagonal correlation function
Tq;Fðx; xÞ relevant to the leading gluonic pole contribution

vanishes at this order which is consistent with the fact that
when the gluon momentum vanishes, there is no spin flip
between two quarks on the opposite side of the cut. For the
off-diagonal correlation functions relevant to the fermionic
pole contribution, we find

TðsÞ
q;Fð0; xÞjFig:4 ¼ �TðsÞ

�q;Fð0; xÞjFig:4

¼ NcCFg
2�2

s

8�
ð1� xÞmðmþ xMÞ2

Z d2k?
ð2�Þ2

� d2q?
ð2�Þ2

Fðk2Þ2
½q2? þm2�½k2? þ L2

sðm2Þ�2 ;
(38)

which is clearly proportional to the mass of quark.

C. Calculation with an axial-vector diquark

In order to test the sensitivity of our results derived in the
last subsection on the choice of the scalar diquark, we
present in this subsection quark-gluon correlation func-
tions calculated with an axial-vector diquark.
By using the same Feynman diagram in Fig. 3 with the

Feynman rule for an axial-vector spectator, and the same
cut vertices, we derive the quark-gluon correlation func-
tions relevant to both leading gluonic and fermionic pole
contribution to the SSAs. Since the pole structure of the
Feynman diagram in Fig. 3 is insensitive to whether the
spectator is a scalar or an axial-vector, we find, like the
case of a scalar diquark, that all off-diagonal quark-gluon
correlation functions relevant to the leading fermionic pole
contribution vanish,

TðvÞ
q;Fð0; xÞ ¼ TðvÞ

�q;Fð0; xÞ ¼ 0: (39)

For the diagonal quark-gluon correlation functions relevant
to the leading gluonic pole contribution, we obtain
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TðvÞ
q;Fðx; xÞ ¼

NcCFg�
2
vgv

4�
xðmþ xMÞ

Z d2k?
ð2�Þ2

d2q?
ð2�Þ2

� ½q2? � ðq? � s?Þ2�Fðk2ÞFððkþ qÞ2Þ
q2?½k2? þ L2

sðm2Þ�½ðk? þ q?Þ2 þ L2
sðm2Þ� ;

(40)

which is the same as that in Eq. (29) except the overall (1�
x) factor is replaced by x due to the difference in diquark
spin. Therefore, the rest of derivation and discussion in the
last subsection following Eq. (29) should be the same for
the case of an axial-vector diquark. We find

TðvÞ
q;Fðx; xÞjpoint-like ¼

NcCFg�
2
vgv

16�2
xðmþ xMÞ

�
Z d2q?

ð2�Þ2
1

q?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? þ 4L2

sðm2Þ
q

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? þ 4L2

sðm2Þ
q

þ q?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? þ 4L2

sðm2Þ
q

� q?
; (41)

TðvÞ
q;Fðx; xÞjdipolar ¼

NcCFg�
2
vgv

16ð2�Þ3 xð1� xÞ2ðmþ xMÞ

�
�

�2
s

L2
sð�2

sÞ
�
2
; (42)

which are the same as those in Eqs. (31) and (33) except
that one factor of (1� x) is replaced by x. We also explic-
itly verify that T�q;Fðx; xÞ ¼ 0when it is calculated with an

axial-vector diquark.
To conclude this section, we summarize our key results

as follows. We find, in terms of an explicit calculation in
the quark-diquark model of the nucleon, that at the leading
nontrivial order all quark-gluon correlation functions rele-
vant to the leading fermionic pole contribution to the SSAs
vanish,

Tq;Fð0; xÞ ¼ Tq;Fðx; 0Þ ¼ 0;

T�q;Fð0; xÞ ¼ �T�q;Fðx; 0Þ ¼ 0:
(43)

We also verify that T�q;Fðx; xÞ ¼ 0, and find that only the

diagonal quark-gluon correlation function, Tq;Fðx; xÞ, is
finite.

IV. CONNECTION TO TMD PARTON
DISTRIBUTION FUNCTIONS

As we stressed in the introduction of this paper, the
collinear factorization approach and the TMD factorization
approach to the SSAs are closely connected and comple-
mentary to each other. It was shown in terms of their
operator definitions that the twist-3 quark-gluon correla-
tion function Tq;Fðx; xÞ is related to the moment of quark

Sivers function f?1Tðx; k2?Þ [9],

Tq;Fðx; xÞ ¼ 1

M

Z
d2k?k2?f

?
1Tðx; k2?Þ; (44)

where f?1Tðx; k2?Þ is the quark Sivers function defined via

the Drell-Yan process, which is related to the quark Sivers
function defined in the semi-inclusive deep inelastic scat-
tering by a minus sign [17,18]. In this section, we explicitly
verify this relation in Eq. (44) by comparing the quark-
gluon correlation function Tq;Fðx; xÞ calculated in this pa-

per with the Sivers function calculated in the same quark-
diquark model of the nucleon.
The quark Sivers function in the quark-diquark model of

the nucleon has been calculated in Ref. [41]. The Feynman
diagram to the lowest nontrivial order for the quark Sivers
function is shown in Fig. 5. In terms of an explicit calcu-
lation with a scalar diquark we obtain

f?ðsÞ
1T ðx; k2?Þjpoint-like ¼

NcCFg�
2
sgs

4ð2�Þ4
ð1� xÞMðmþ xMÞ
k2?½k2? þ L2

sðm2Þ�

� ln
k2? þ L2

sðm2Þ
L2
sðm2Þ ; (45)

for a pointlike interaction between the nucleon, the quark,
and the spectator diquark, and

f?ðsÞ
1T ðx; k2?Þjdipolar ¼

NcCFg�
2
sgs

4ð2�Þ4 ð1� xÞ3Mðmþ xMÞ

� ½�2
s�2

L2
sð�2

sÞ½k2? þ L2
sð�2

sÞ�3
(46)

for using the dipolar form factor for the interaction be-
tween the nucleon, the quark, and the spectator diquark.
Similarly, we find, in terms of the calculation with an axial-
vector diquark,

f?ðvÞ
1T ðx; k2?Þjpoint-like ¼

NcCFg�
2
vgv

4ð2�Þ4
xMðmþ xMÞ

k2?½k2? þ L2
sðm2Þ�

� ln
k2? þ L2

sðm2Þ
L2
sðm2Þ ; (47)

and

f?ðvÞ
1T ðx; k2?Þjdipolar ¼

NcCFg�
2
vgv

4ð2�Þ4 xð1� xÞ2Mðmþ xMÞ

� ½�2
s�2

L2
sð�2

sÞ½k2? þ L2
sð�2

sÞ�3
; (48)

FIG. 5 (color online). Lowest order Feynman diagram for the
quark Sivers function in the quark-diquark model of the nucleon
[41].
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respectively. The calculated results here are the same as
those obtained in Ref. [41] except the overall constant
factor ½�2

s�2 for those with the dipolar form factor. The
difference is, as explained earlier, due to a slightly different
choice of the form factor so that the calculated twist-3
correlation functions as well as the quark Sivers function
appear to have the right dimension.

In order to verify the relation in Eq. (44), we need to take
the moment of the quark Sivers functions calculated above
in the same quark-diquark model of the nucleon. However,
the moment of the quark Sivers functions in Eqs. (45) and
(47) calculated by using the pointlike interaction is loga-
rithmically divergent, for example,

1

M

Z
d2k?k2?f

?ðsÞ
1T ðx; k2?Þjpoint-like

¼ NcCFg�
2
sgs

16�2
ð1� xÞðmþ xMÞ

Z d2k?
ð2�Þ2

� 1

½k2? þ L2
sðm2Þ� ln

k2? þ L2
sðm2Þ

L2
sðm2Þ : (49)

The moment of the quark Sivers function in Eq. (49) is
clearly not necessarily the same as the twist-3 quark-gluon
correlation function in Eq. (31), even if one imposes the
same ultraviolet cutoff on the transverse momentum inte-
gration in both Eqs. (31) and (49). This is because the
ultraviolet divergence of the calculated quark-gluon corre-
lation function in Eq. (31) was not regularized in the same
way as that in the Sivers function calculation in Eq. (45).
This example indicates that if one wants to compare the
both sides of Eq. (44) perturbatively by projecting the
equation onto a parton state, one has to specify the regu-
larization and renormalization condition for the ultraviolet
divergence in both sides. In general, the relation in Eq. (44)
is not necessarily valid for all orders in perturbative calcu-
lations if one does not regularize and renormalize the
ultraviolet divergence in the same way for the both sides.

If we regularize and renormalize the ultraviolet diver-
gence in both sides of Eq. (44) in the same way, we should
expect the relation to hold. To explicitly demonstrate this,
we compare the quark-gluon correlation functions and the
quark Sivers function calculated with the same dipolar
form factor,

scalar diquark :
1

M

Z
d2k?k2?f

?ðsÞ
1T ðx; k2?Þ

¼ NcCFg�
2
sgs

16ð2�Þ3 ð1� xÞ3ðmþ xMÞ
�

�2
s

L2
sð�2

sÞ
�
2
; (50)

axial-vector diquark :
1

M

Z
d2k?k2?f

?ðvÞ
1T ðx; k2?Þ

¼ NcCFg�
2
vgv

16ð2�Þ3 xð1� xÞ2ðmþ xMÞ
�

�2
s

L2
sð�2

sÞ
�
2
: (51)

The right-hand-side of above equations are clearly equal to
the quark-gluon correlation functions in Eqs. (33) and (42),
respectively.

V. SUMMARYAND CONCLUSIONS

In this paper, we calculate various twist-3 quark-gluon
correlation functions of a transversely polarized nucleon in
the quark-diquark model of the nucleon. Our calculations
are done with the diquark being a scalar particle as well
as being an axial-vector particle. We have found from
our calculation at the first nontrivial order that all quark-
gluon correlation functions relevant to the leading fermi-
onic pole contribution, Tq;Fð0; xÞ, T�q;Fð0; xÞ, Tq;Fðx; 0Þ,
and T�q;Fðx; 0Þ, vanish. Only one of the diagonal quark-

gluon correlation functions relevant to the leading gluonic
pole contribution, Tq;Fðx; xÞ, is finite. The other diagonal

quark-gluon correlation function, T�q;Fðx; xÞ, also vanishes
from both the symmetry argument and explicit calculation.
Our finding is consistent with the general intuition when a
single quark state interferes with a quark-gluon composite
state, it is more likely for the single quark to interfere with
the state in which the quark carries the same amount of
momentum than a state where the quark carries the zero
momentum. Our conclusions are independent of the di-
quark being a scalar or an axial-vector.
Although our results are derived from a specific model

calculation, the features of the calculated results should
allow us to conclude with confidence that the diagonal
quark-gluon correlation function Tq;Fðx; xÞ is much larger

than all other quark-gluon correlation functions that are
relevant to the leading soft pole contribution to the SSAs.
This conclusion is significant and important for phenome-
nological study of the SSAs. It enables us to study the
physics of SSAs without including too many unknown
correlation functions at the early stage of probing this
new domain of QCD dynamics. However, it is the limita-
tion of the quark-diquark model of the nucleon that we are
not able to calculate the trigluon correlation functions in
this model, which are closely connected to the quark-gluon
correlation functions via perturbative evolution [33,36].
As we explained in last section, it requires a caution in

using the relation between the twist-3 quark-gluon corre-
lation function Tq;Fðx; xÞ and the moment of the quark

Sivers function in Eq. (44). Since both sides of the equa-
tion, the twist-3 quark-gluon correlation function Tq;Fðx; xÞ
on the left and the moment of quark Sivers function on the
right, are perturbatively divergent, the relation is valid only
if the same regularization and renormalization scheme is
adopted to the calculation of both sides. As an example, we
demonstrate in the last section that the relation could be
violated perturbatively if different regularization and re-
normalization schemes were used; and the relation is valid
if the same scheme were used in both sides.

QUARK-GLUON CORRELATION FUNCTIONS RELEVANT TO . . . PHYSICAL REVIEW D 81, 114030 (2010)

114030-9



ACKNOWLEDGMENTS

We thank M. Burkardt and G. Sterman for helpful dis-
cussions. This work was supported in part by the U. S.
Department of Energy under Grant No. DE-FG02-
87ER40371. Z. K. and J. Q. are grateful to RIKEN/BNL

Research Center, Brookhaven National Laboratory, and the
U.S. Department of Energy (Contract No. DE-AC02-
98CH10886) for providing the support and facilities essen-
tial for the completion of this work.

[1] G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976).
[2] For reviews, see: U. D’Alesio and F. Murgia, Prog. Part.

Nucl. Phys. 61, 394 (2008).
[3] G. L. Kane, J. Pumplin, and W. Repko, Phys. Rev. Lett. 41,

1689 (1978).
[4] D.W. Sivers, Phys. Rev. D 41, 83 (1990); 43, 261 (1991).
[5] J. C. Collins, Nucl. Phys. B396, 161 (1993).
[6] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys. Lett. B

530, 99 (2002); Nucl. Phys. B642, 344 (2002).
[7] P. J. Mulders and R.D. Tangerman, Nucl. Phys. B461, 197

(1996); B484, 538(E) (1997); D. Boer and P. J. Mulders,
Phys. Rev. D 57, 5780 (1998).

[8] X. d. Ji and F. Yuan, Phys. Lett. B 543, 66 (2002); A. V.
Belitsky, X. Ji, and F. Yuan, Nucl. Phys. B656, 165 (2003).

[9] D. Boer, P. J. Mulders, and F. Pijlman, Nucl. Phys. B667,
201 (2003).

[10] A. Bacchetta, C. J. Bomhof, P. J. Mulders, and F. Pijlman,
Phys. Rev. D 72, 034030 (2005); C. J. Bomhof, P. J.
Mulders, and F. Pijlman, Eur. Phys. J. C 47, 147 (2006).

[11] A. V. Efremov and O.V. Teryaev, Yad. Fiz. 36, 242 (1982)
[Sov. J. Nucl. Phys. 36, 140 (1982)]; A. V. Efremov and
O.V. Teryaev, Phys. Lett. 150B, 383 (1985).

[12] J.W. Qiu and G. Sterman, Phys. Rev. Lett. 67, 2264
(1991); Nucl. Phys. B378, 52 (1992); Phys. Rev. D 59,
014004 (1998).

[13] J.W. Qiu and G. Sterman, Nucl. Phys. B378, 52 (1992);
[14] H. Eguchi, Y. Koike, and K. Tanaka, Nucl. Phys. B763,

198 (2007); Y. Koike and K. Tanaka, Phys. Lett. B 646,
232 (2007); 668, 458(E) (2008); Phys. Rev. D 76, 011502
(2007).

[15] J.W. Qiu, W. Vogelsang, and F. Yuan, Phys. Lett. B 650,
373 (2007); Phys. Rev. D 76, 074029 (2007).

[16] A. Bacchetta, C. Bomhof, U. D’Alesio, P. J. Mulders, and
F. Murgia, Phys. Rev. Lett. 99, 212002 (2007); S. Boffi,
A. V. Efremov, B. Pasquini, and P. Schweitzer, Phys. Rev.
D 79, 094012 (2009); A. Bacchetta, M. Radici, F. Conti,
and M. Guagnelli, arXiv:1003.1328; P. Schweitzer, T.
Teckentrup, and A. Metz, Phys. Rev. D 81, 094019 (2010).

[17] J. C. Collins, Phys. Lett. B 536, 43 (2002).
[18] Z. B. Kang and J.W. Qiu, Phys. Rev. Lett. 103, 172001

(2009).
[19] Z. B. Kang and J.W. Qiu, Phys. Rev. D 81, 054020 (2010);

Z. B. Kang and F. Yuan, Phys. Rev. D 81, 054007 (2010).
[20] D. Boer, Nucl. Phys. B806, 23 (2009); D. Boer, P. J.

Mulders, and C. Pisano, Phys. Rev. D 80, 094017 (2009).
[21] Z. Kang, F. Yuan, and J. Zhou, arXiv:1002.0399.
[22] C. Kouvaris, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys.

Rev. D 74, 114013 (2006).

[23] Z. B. Kang and J.W. Qiu, Phys. Rev. D 78, 034005 (2008);
Z. B. Kang, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys.
Rev. D 78, 114013 (2008).

[24] Y. Koike and T. Tomita, Phys. Lett. B 675, 181 (2009).
[25] J. C. Collins and J.W. Qiu, Phys. Rev. D 75, 114014

(2007).
[26] W. Vogelsang and F. Yuan, Phys. Rev. D 76, 094013

(2007).
[27] J. C. Collins, arXiv:0708.4410.
[28] T. C. Rogers and P. J. Mulders, Phys. Rev. D 81, 094006

(2010).
[29] X. Ji, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev.

Lett. 97, 082002 (2006); Phys. Rev. D 73, 094017 (2006);
Phys. Lett. B 638, 178 (2006); Y. Koike, W. Vogelsang,
and F. Yuan, Phys. Lett. B 659, 878 (2008).

[30] A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, J. High
Energy Phys. 08 (2008) 023.

[31] X. Ji, J. P. Ma, and F. Yuan, Phys. Lett. B 597, 299 (2004);
Phys. Rev. D 71, 034005 (2005).

[32] J.W. Qiu and G. Sterman, AIP Conf. Proc. 223, 249
(1991); Nucl. Phys. B353, 137 (1991).

[33] Z. B. Kang and J.W. Qiu, Phys. Rev. D 79, 016003 (2009).
[34] J. Zhou, F. Yuan, and Z. T. Liang, Phys. Rev. D 79, 114022

(2009).
[35] W. Vogelsang and F. Yuan, Phys. Rev. D 79, 094010

(2009).
[36] V.M. Braun, A. N. Manashov, and B. Pirnay, Phys. Rev. D

80, 114002 (2009).
[37] A. Airapetian et al. (HERMES Collaboration), Phys. Rev.

Lett. 94, 012002 (2005); 103, 152002 (2009).
[38] V. Y. Alexakhin et al. (COMPASS Collaboration), Phys.

Rev. Lett. 94, 202002 (2005); A. Martin (COMPASS
Collaboration), Czech. J. Phys. 56, 33 (2006); M.
Alekseev et al. (COMPASS Collaboration), Phys. Lett.
B 673, 127 (2009).

[39] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92,
171801 (2004); B. I. Abelev et al. (STAR Collaboration),
Phys. Rev. Lett. 99, 142003 (2007); 101, 222001 (2008);
S. S. Adler et al. (PHENIX Collaboration), Phys. Rev.
Lett. 95, 202001 (2005); I. Arsene et al. (BRAHMS
Collaboration), Phys. Rev. Lett. 101, 042001 (2008).

[40] M. Anselmino et al., Eur. Phys. J. A 39, 89 (2009).
[41] A. Bacchetta, F. Conti, and M. Radici, Phys. Rev. D 78,

074010 (2008).
[42] M. Luo, J.W. Qiu, and G. Sterman, Phys. Rev. D 50, 1951

(1994).
[43] X. Guo, Phys. Rev. D 58, 036001 (1998); Nucl. Phys.

A638, 539c (1998).

ZHONG-BO KANG et al. PHYSICAL REVIEW D 81, 114030 (2010)

114030-10

http://dx.doi.org/10.1103/PhysRevLett.36.1113
http://dx.doi.org/10.1016/j.ppnp.2008.01.001
http://dx.doi.org/10.1016/j.ppnp.2008.01.001
http://dx.doi.org/10.1103/PhysRevLett.41.1689
http://dx.doi.org/10.1103/PhysRevLett.41.1689
http://dx.doi.org/10.1103/PhysRevD.41.83
http://dx.doi.org/10.1103/PhysRevD.43.261
http://dx.doi.org/10.1016/0550-3213(93)90262-N
http://dx.doi.org/10.1016/S0370-2693(02)01320-5
http://dx.doi.org/10.1016/S0370-2693(02)01320-5
http://dx.doi.org/10.1016/S0550-3213(02)00617-X
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1103/PhysRevD.57.5780
http://dx.doi.org/10.1016/S0370-2693(02)02384-5
http://dx.doi.org/10.1016/S0550-3213(03)00121-4
http://dx.doi.org/10.1016/S0550-3213(03)00527-3
http://dx.doi.org/10.1016/S0550-3213(03)00527-3
http://dx.doi.org/10.1103/PhysRevD.72.034030
http://dx.doi.org/10.1140/epjc/s2006-02554-2
http://dx.doi.org/10.1016/0370-2693(85)90999-2
http://dx.doi.org/10.1103/PhysRevLett.67.2264
http://dx.doi.org/10.1103/PhysRevLett.67.2264
http://dx.doi.org/10.1016/0550-3213(92)90003-T
http://dx.doi.org/10.1103/PhysRevD.59.014004
http://dx.doi.org/10.1103/PhysRevD.59.014004
http://dx.doi.org/10.1016/0550-3213(92)90003-T
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.016
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.016
http://dx.doi.org/10.1016/j.physletb.2007.01.044
http://dx.doi.org/10.1016/j.physletb.2007.01.044
http://dx.doi.org/10.1103/PhysRevD.76.011502
http://dx.doi.org/10.1103/PhysRevD.76.011502
http://dx.doi.org/10.1016/j.physletb.2007.05.023
http://dx.doi.org/10.1016/j.physletb.2007.05.023
http://dx.doi.org/10.1103/PhysRevD.76.074029
http://dx.doi.org/10.1103/PhysRevLett.99.212002
http://dx.doi.org/10.1103/PhysRevD.79.094012
http://dx.doi.org/10.1103/PhysRevD.79.094012
http://arXiv.org/abs/1003.1328
http://dx.doi.org/10.1103/PhysRevD.81.094019
http://dx.doi.org/10.1016/S0370-2693(02)01819-1
http://dx.doi.org/10.1103/PhysRevLett.103.172001
http://dx.doi.org/10.1103/PhysRevLett.103.172001
http://dx.doi.org/10.1103/PhysRevD.81.054020
http://dx.doi.org/10.1103/PhysRevD.81.054007
http://dx.doi.org/10.1016/j.nuclphysb.2008.06.011
http://dx.doi.org/10.1103/PhysRevD.80.094017
http://arXiv.org/abs/1002.0399
http://dx.doi.org/10.1103/PhysRevD.74.114013
http://dx.doi.org/10.1103/PhysRevD.74.114013
http://dx.doi.org/10.1103/PhysRevD.78.034005
http://dx.doi.org/10.1103/PhysRevD.78.114013
http://dx.doi.org/10.1103/PhysRevD.78.114013
http://dx.doi.org/10.1016/j.physletb.2009.04.017
http://dx.doi.org/10.1103/PhysRevD.75.114014
http://dx.doi.org/10.1103/PhysRevD.75.114014
http://dx.doi.org/10.1103/PhysRevD.76.094013
http://dx.doi.org/10.1103/PhysRevD.76.094013
http://arXiv.org/abs/0708.4410
http://dx.doi.org/10.1103/PhysRevD.81.094006
http://dx.doi.org/10.1103/PhysRevD.81.094006
http://dx.doi.org/10.1103/PhysRevLett.97.082002
http://dx.doi.org/10.1103/PhysRevLett.97.082002
http://dx.doi.org/10.1103/PhysRevD.73.094017
http://dx.doi.org/10.1016/j.physletb.2006.05.044
http://dx.doi.org/10.1016/j.physletb.2007.11.096
http://dx.doi.org/10.1088/1126-6708/2008/08/023
http://dx.doi.org/10.1088/1126-6708/2008/08/023
http://dx.doi.org/10.1016/j.physletb.2004.07.026
http://dx.doi.org/10.1103/PhysRevD.71.034005
http://dx.doi.org/10.1063/1.40488
http://dx.doi.org/10.1063/1.40488
http://dx.doi.org/10.1016/0550-3213(91)90504-Q
http://dx.doi.org/10.1103/PhysRevD.79.016003
http://dx.doi.org/10.1103/PhysRevD.79.114022
http://dx.doi.org/10.1103/PhysRevD.79.114022
http://dx.doi.org/10.1103/PhysRevD.79.094010
http://dx.doi.org/10.1103/PhysRevD.79.094010
http://dx.doi.org/10.1103/PhysRevD.80.114002
http://dx.doi.org/10.1103/PhysRevD.80.114002
http://dx.doi.org/10.1103/PhysRevLett.94.012002
http://dx.doi.org/10.1103/PhysRevLett.94.012002
http://dx.doi.org/10.1103/PhysRevLett.103.152002
http://dx.doi.org/10.1103/PhysRevLett.94.202002
http://dx.doi.org/10.1103/PhysRevLett.94.202002
http://dx.doi.org/10.1007/s10582-006-0063-0
http://dx.doi.org/10.1016/j.physletb.2009.01.060
http://dx.doi.org/10.1016/j.physletb.2009.01.060
http://dx.doi.org/10.1103/PhysRevLett.92.171801
http://dx.doi.org/10.1103/PhysRevLett.92.171801
http://dx.doi.org/10.1103/PhysRevLett.99.142003
http://dx.doi.org/10.1103/PhysRevLett.101.222001
http://dx.doi.org/10.1103/PhysRevLett.95.202001
http://dx.doi.org/10.1103/PhysRevLett.95.202001
http://dx.doi.org/10.1103/PhysRevLett.101.042001
http://dx.doi.org/10.1140/epja/i2008-10697-y
http://dx.doi.org/10.1103/PhysRevD.78.074010
http://dx.doi.org/10.1103/PhysRevD.78.074010
http://dx.doi.org/10.1103/PhysRevD.50.1951
http://dx.doi.org/10.1103/PhysRevD.50.1951
http://dx.doi.org/10.1103/PhysRevD.58.036001
http://dx.doi.org/10.1016/S0375-9474(98)00367-4
http://dx.doi.org/10.1016/S0375-9474(98)00367-4

