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Early Muon Pair Data—soon to be called Drell-Yan

VOLUME 25, NUMBER 21 PHYSICAL REVIEW LETTERS 23 NOVEMBER 1970

Observation of Massive Muon Pairs in Hadron Collisions*

i
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N = . Muon Pairs in the mass range 1 <m,, <6.7 GeV/c?
+ —35} : have been observed in collisions of high-energy
= . . . . .
3 t protons with uranium nuclei. At an incident energy
8 e i of 29 GeV, the cross section varies smoothly as do/
. i dm,, = 107?/m, > cm* (GeV/c)? and exhibits no
(2 . .
— { resonant structure. The total cross section increases
—37 } i by a factor of 5 as the proton energy rises from 22 to
29.5 GeV.
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5
Drell and Yan’s explanation

VorLume 25, NUMBER 5 PHYSICAL REVIEW LETTERS 3 Aucust 1970

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 25 May 1970)

Om the basis of a parton model studied earlier we consider the production process of
large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region,
s—=, @°/s finite, §° and s being the squared invariant masses of the lepton pair and the
two initial hadrons, respectively. General scaling properties and connections with deep
inelastic electron scattering are discussed. In particular, a rapidly decreasing eross
section as Q%/s —1 is predicted as a consequence of the observed rapid falloff of the in-
elastic scattering structure function vW, near threshold.
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Drell-Yan Cross Section

Next-to-Leading Order

= These diagrams are responsible for up to 50%
of the measured cross section

= Parton distributions are Universal!

= Intrinsic transverse momentum of quarks ©@ I @
(although a small effect, A > 0.8) +

= Soft gluon resummation at all orders

L
o)
~—~

Angular Distributions

d
: d—SOZ x 14 Acos? 6 + sin 26 cos ¢

+g sin® 6 cos 2¢ | 'y

Higher Twist??
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Drell-Yan Cross Section

= Measured cross section is a convolution ]
of beam and target parton distributions 10

®=  Proton Beam

T 1 |||l|l'|

— Target antiquarks and beam 10 2
d?o 4o _
dxydx - ThTtS Z 63 9 (@b ()
bEo bt qge{u,d,s,... } 10 0
= u-quark dominance +qb () g ()]

(2/3)% vs. (1/3)?
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Drell-Yan Cross Section

= Measured cross section is a convolution
of beam and target parton distributions

= Proton Beam
— Target antiquarks and beam

d?o

drpdx

47TC¥2 Z
TprItS

ge{u,d,s,... }

= u-quark dominance
(2/3)% vs. (1/3)?

= U beam
- Valence beam anti-u quark and u

target quark

d?o A

diL}rdCEN N

TrITNS

Valence x Valence

Valence-sea xV4

Sea-Sea
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What can Drell-Yan tell us about the EMC effect?

Paul E. Reimer pA Spin Independent Drell-Yan
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Structure of nucleonic matter:
The EMC effect

Comparison with

Deep IneIastiF Sc.atte.ring (DIS) 11 & NMC DIS
B EMC: Parton distributions of bound i
and free nucleons are different. 1.05 - ¢ [h E135 DIS
BEe A E665 RC DIS
B Nuclear binding effects distributions 1 | AF ¢ ¢ |
of quarks within the nucleons % | ® ? ¢
©0.95 g
Sb [:] O
0.9
O ﬁ
0.85
o
0.8
| I T | | (I

[ | I | L1 11 | L1 1 1 | L1 1 | | L 111 | [
0 01 02 03 04 05 0.6 0.7
X

Paul E. Reimer pA Spin Independent Drell-Yan

10
é 7 January 2013



Structure of nucleonic matter:
How do DIS and Drell-Yan data compare?

B Shadowing present in Drell-Yan

B Antishadowing not seen in Drell-Yan
—Valence only effect

1.1

1.05

0.85

0.8

O NMC DIS
£ E139 DIS
A E665 RC DIS

Drell-Yan Ratio
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Kulagin and Petti sea vs. valence nuclear effects
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. 1.2
Structure of nucleonic .

matter: Where are the 12
nuclear pions? 115

M The binding of nucleons in a
nucleus is expected to be
governed by the exchange of <05
virtual “Nuclear” mesons. P

b

0.95
0.9
0.85

0.8
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. 1.2
Structure of nucleonic .

matter: Where are the 12
nuclear pions? 115

M The binding of nucleons in a
nucleus is expected to be
governed by the exchange of 1.05

1.1

virtual “Nuclear” mesons. @9
B No antiquark enhancement seen © 1
in Drell-Yan (Fermilab E772)
0.95
data.
0.9
0.85
0.8
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. 1.2
Structure of nucleonic .

matter: Where are the 12
nuclear pions? 115
M The binding of nucleons in a
: 1.1
nucleus is expected to be
governed by the exchange of < 1.05
virtual “Nuclear” mesons. ég
B No antiquark enhancement seen © 1
in Drell-Yan (Fermilab E772)
0.95
data.
0.9
M Contemporary models predict 0.85
large effects to antiquark '
distributions as x increases. 0.8

B Models must explain both DIS-
EMC effect and Drell-Yan
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M The binding of nucleons in a
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in Drell-Yan (Fermilab E772)
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N
Structure of nucleonic matter:

How do sea quark distributions differ in a nucleus?

Intermediate-x sea PDF’s

B v-DIS oniron—Are nuclear effects with 1.1 # E906 Drell-Yan ¢ NMC DIS
the weak interaction the same as * ¢
electromagnetic? 1.05 - E772 Drell-Yan E139 DIS

B Are nuclear effects the same for sea and 4 E665 RC DIS

valence distributions 1

0.85

0.8
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Parton Loses Energy

in Nuclear Medium
r

Partonic Energy Loss

Pre-interaction parton moves through cold nuclear matte
and looses energy.

Apparent (reconstructed) kinematic values (x; or x;) are
shifted

Fit shift in x, relative to deuterium

O

B Models:
— Galvinand Milana Az, = —r 2 A3
RIA/p)? Ko 1
. ( /p3( — Brodsky and Hoyer Az = —?A3
R=1 R
.. . R3 ,2
~~~~~ X — Baier et al. Ax, = —?A?)

%o
‘e
.
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Event Reconstruction

= We measure 3\
1. Direction of particles
2. Absolute momentum of
particles
= We assume J

3. Particles are muons

B Add 4-vectors of muons to get 4-vectors of

virtual photon P
— Now we know everything

Paul E. Reimer pA Spin Independent Drell-Yan

momentum
vector

Relativistic energy-
momentum vector P

P?=m? = TiTpS

Pi

max.

P

~

— LFeymann — Lb — I
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Partonic Energy Loss
= [E866 data are consistent with NO
partonic energy loss for all three models

= Caveat: A correction must be made for
shadowing because of x;—x, correlations

— E866 used an empirical correction based on
EKS fit do DIS and Drell-Yan.

M Treatment of parton propagation length
and shadowing are critical

— Analysis of our p-A Drell-Yan data using the
Kopeliovich model.

dE/dx = 2.32 £ 0.52 + 0.5 GeV/fm

— Same data with different shadowing
correction and propagation length

B Better data outside of shadowing region
are necessary.

B Drell-Yan p; broadening also will yield
information

Paul E. Reimer pA Spin Independent Drell-Yan
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Parton Energy Loss
B Shiftin Ax/1/s
— larger at 120 GeV
B Ability to distinguish between models
B Measurements rather than upper limits
B E906 will have sufficient statistical precision to

allow events within the shadowing region, x, < 0.1,
to be removed from the data sample

I | ! | ! | ! 1 ! | ! | T I

1.2 |~ == = EKS shadowing parameterization |
—_ A=C Q = 4.5 GeV 9
) B - = Initial-state energy loss calculations |
> ——
B/ B \\
= 0.8 —— X,~160fm
T
c - —— X, ~50fm
0.6 — X0~30fm

lllllllll

0.7

0.65

0.6

E906 expected uncertainties
Shadowing region removed

Brods
<0

Baier

44 GeV/fm

< 0.046 GeV/fm> L2

ky and Hoyer

03

04

Shadowing vs. initial state energy loss

R.B. Neufeld et al. Physics Letters B

704 (2011) 590-595

Possible to distinguish between A1/3

(collisional) and A?/3 (radiative)
dependence?

Would like data at different s

7 January 2013
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Advantages of 120 GeV Main Injector
The future:

The (very successful) past:
Fermilab E906

Fermilab E866/NuSea
B Datain 1996-1997 B First test runin 2011

B 1H, 2H, and nuclear targets M !H, °H, and nuclear targets

B 800 GeV proton beam

B 120 GeV proton Beam

qc{u,d,s,... }

B Cross section scales as 1/s
— 7% that of 800 GeV beam

M Backgrounds, primarily from J/4
decays scaleass

— 7% Luminosity for same detector  |{ (@& i
rate as 800 GeV beam N 120 GeV

50% statistics!!

at the same x,, x,

23

7 January 2013




\
Drell-Yan Spectrometer Guiding Principles

= Follow basic design of MEast spectrometer (don’t reinvent the wheel):
— Two magnet spectrometer — Hadron absorber within first magnet

— Beam dump within first magnet — Muon-ID wall before final elements
= Where possible and practical, reuse elements of the E866 spectrometer.

— Tracking chamber electronics

— Hadron absorber, beam dump, muon ID walls

— Station 2 and 3 tracking chambers

— Hodoscope array PMT’s

— SM3 Magnet

= New Elements

— 1%t magnet (different boost)
Experiment shrinks from 60m
to 26m !

— Sta. 1 tracking (rates)

— Scintillator (age)
— Trigger (flexibility)

Paul E. Reimer pA Spin Independent Drell-Yan
é 7 January 2013
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SeaQuest E-906 pp and pD physics

2.25
= Non perturbative QCD models can ® 900 ;g
explain excess d-bar quarks, but no 2 A 34107 POT

return to symmetry or deficit of d- B ES66

bar quarks 1.75 A NASI
1.5 — MRSr2

7 @ CTEQ4m

Taco (2) /@ 125 CTEQ6

ta /

E866 Systematic Error

||||||||||||||||A|M\:!a=1|ill4=—r-‘
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Time Line

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Proposed to Approved w/ Fermilab PAC Funding
Fermilab conditions reaffirms approval Approval

2008 2009 2010 2011 2012 2013

Fermilab upgrade Main Run

Beam Line Problems
Vacuum Filled w/ Repairs more repairs
Leak concrete
Shielding
additions

*Additional radiation shielding required
* 500 tons of concrete and steel
* 14 tons of steel on movable cart

Paul E. Reimer pA Spin Independent Drell-Yan
° 7 January 2013
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Eventually was delivered.
Our reactions

Paul E. Reimer pA Spin Independent Drell-Yan
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\
“Splat” Events Symptoms and Clues:

Production: run_002029
Event: 771
Coda Event:

* Very large hit multiplicity for dimuon
trigger events for both matrix and
simple NIM triggers

e All systems: hodoscopes, chambers,
and prop. tubes swamped

* Average intensity normal, measured
by beamline instrumentation

Stations 3+4 (all _
hits) o

2000

from Josh Rubin, U. Michigan

Paul E. Reimer pA Spin Independent Drell-Yan
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Understanding the Beam

* Independent 10kHz pulsed DAQ
read out raw hodoscope rates

* Bins are integrated counts over
100us (=5000 RF buckets)

* Large variation in Instantaneous
intensity, duty factor very low.

e Periodic structure 0
250

* Frequency phase locked to AC
line 60 Hz 0
150
100

Paul E. Reimer pA Spin Independent Drell-Yan

| X1T vs eventlID (10kHz trigger) |

1_X11
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The Splat-Block Card

A card was developed to keep a running average of the multiplicity over a 160 ns
window (8 RF buckets).

e If average multiplicity above threshold, raises a trigger veto

* Luminosity greatly reduced, but trigger suppresses windows of time with large
beam intensities.

Production: run_002022
Event: 18
Coda Event:

Event: 18
Coda Event:
o

1

100

—_—

i
Vi

| B
]

|
|

_.‘,
|

==
e —

)

[em]

from Josh Rubin, U. Michigan

-100
x [cm] -200
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Commissioning (beam line and spectrometer) RUN (~two months)

=  First protons arrived March 8, 2012, Run ended April 30, 2012

= All systems worked!
— Typical issues with mapping and timing resolved quickly
— Some challenges with TDC microcode — modules rolled-back to a prior software version,
zero-suppression moved to VME CPUs—>relatively long dead-times

=  Unexpectedly large hit multiplicities with dimuon trigger — termed “splat events”

Where do we go from here?

= Better Beam Quality
— Fermilab is has gotten this message
— mistuned 720 Hz harmonic suppression (was suppressing 680)
— Better 60 Hz AC filtering on all power supplies
— Completely revamped control and feedback system
— Other improvements

= Experimental Improvements
— TDC Micro code improvements—Iless dead time, pipelining?
— Cherenkov Beam monitor for better splat block
— New St. 1 and St. 3- for better rate capabilities
— Phototube bases optimized for rate rather than linearity

Paul E. Reimer pA Spin Independent Drell-Yan
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pA Drell-Yan at RHIC? P 7

=  What about the J/y and y’? 10200 Gev- | """""""" % """ .

— See talk by Mike Leitch in 1% session - _ﬁ - i

— E906/SeaQuest does not have sufficient o | = 1

resolution to see the v’ 08" = 196eV

Possibly easier to select kinematical regions to oz LY .

emphasize quarks or antiquarks in proton or 0.6_ B I] | ]
Nucleus. 10y 10"

di-leptons may be hard to see/separate from
background

Use W* or Z%instead of y* q
— Easy to identify
— Necessarily correlates x, X,:

ST1XTo = M‘%V q

— For W*—difficult to reconstruct x, x, since v is unseen

Paul E. Reimer pA Spin Independent Drell-Yan
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Polarized Drell-Yan@Fermilab Main Injector

= Polarized beam

Anselmino et.al

— Major advantage—the beamis a 0.05—
blow torch— Luminosity - Ay2=20 error band

— Major disadvantage—the beam
polarization is presently .

) < 0.06]

virtual—only a proposal

= Spectrometer:

— By 2014, spectrometer will be well B FNAL pol DY stat errors
. . 005+ 3.2x 10" POT
understood, including angular L ~1,288k DY events
acceptance 1 1 L l 1 1 L l 1 1 1 l | L 1 l

Recycler Ring (above MI) 0.8

Polarized Source\
A : Rotator Polarimeter .0

Polarime}gs\ fi*i\‘ (.‘) 1)

o) N A
—mwawsanw e -

7 W \ &2
O
\Beoater 400 MeV Linac

@

Fast [;rated “
Polarimet, @b@
@@Mﬁn Injector

Paul E. Reimer QCD-N12 Drell-Yan

Pulsed Quads ?
\Partial Snake

Y SeaQuest

Beamline CNI Polarimeter Fast Polarimeter
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Conclusion—not yet

Unpolarized pA collisions can offer unique insight into
=  EMC Effect
= Partonic Energy Loss

Parton Loses Energy

A
Fermilab E-906/SeaQuest spectrometer works, waiting
for beam

Fermilab may also provide laboratory for pA physics o

-
Recycler Ring (above MI) 1

Fast Uncelibrated and CNI

Polarimeters with H, Jet 1@ ‘ \
d \ \
120 Gey, fal Snoke (Al i
Vi 7 |
% j { g PN o.65

Beamline CNI Polarimeter ~ Fast Polarimeter
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EOO06 Expected Uncertaities
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