Heavy Quark Fragmentation Functions in e⁺e⁻ annihilation **Rolf Seuster** Univ. of Hawaii **Heavy Flavor Productions &** Hot/Dense Quark Matter '05, BNL -Introduction -Charm Fragmentation Functions @ 10.6 GeV $c \rightarrow D^{0}, D^{+}, D_{s}^{+}, \Lambda_{C}^{+}, D^{*+} \text{ and } D^{*0}$ -Beauty Fragmentation Function @ 91.2 GeV $b \rightarrow$ weakly decaying B's D^{*+} from $Z_0 \rightarrow cc$ decays -Discussion

-Summary

Introduction: typical e⁺e⁻ event

different states of a typical
 e⁺e⁻ annihilation event

 QCD: parton shower, gluon splitting, hadronization "fragmentation function"

 electroweak phase: decay of most resonances

Introduction: Experiments

implication:

heavy quark must be produced far above production threshold

Belle/KEKB @10.6 GeV only charm frag.fcn

expm. at LEP and SLD @ 91.2 GeV, charm and beauty frag.fcn

Introduction: Fragmentation Function

 Fragmentation Functions F describe transition amplitude of quark Q to hadron H

• parameters to $F(z,m_{\perp})$ are:

$$z \equiv \frac{(E+p_z)_H}{(E+p_z)_Q}$$

"longitudinal momentum fraction"

$$m_{\perp}^2 \equiv m^2 + p_x^2 + p_y^2$$

"transverse mass"

Introduction: Variables

2 variables commonly used:

$$x_{p} \equiv \frac{\left|\vec{p}_{Candidate}\right|}{\left|\vec{p}_{MAX}\right|}$$

scaled momentum

$$x_E \equiv \frac{E_{Candidate}}{E_{MAX}}$$

scaled energy

Experimental Apparatus @ 10.6 GeV Belle Detector

Accelerator Performance

Continuum and On-Resonance

~10% of data taken below BB threshold
-to study dominant background to B decays
-to do QCD studies with e⁺e⁻ →qq (q=d,u,s,c)
labelled as "continuum"

Charm Fragmentation Functions hep-ex/0506068

♦ c→D⁰, D⁺, D_s⁺, Λ_c^+ , D^{*+} and D^{*0}

'standard' decay modes: $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$, $D_s^+ \rightarrow \phi(K^+K^-)\pi^+$, $\Lambda_c^+ \rightarrow pK^-\pi^+$, $D^{*+} \rightarrow (K^{-}\pi^{+})\pi^{+}_{Slow}, \quad D^{*+} \rightarrow (K^{-}\pi^{+}\pi^{+})\pi^{0}_{Slow} \text{ and } D^{*0} \rightarrow (K^{-}\pi^{+})\pi^{0}_{Slow}$ 350 \mathbf{D}^{*+} 300 250 fit signal yield in bins of 200 150 100 $x_{P} \equiv |\vec{P}_{Cand}|/|\vec{P}_{MAX}|$ 50 -0015 -0.01 0.005 0.01 0.01! ΔM_{rec} - ΔM_{PDG} -0 005 0

data set: 15 fb⁻¹ continuum, or 45 · 10⁶ events
 88 fb⁻¹ on-resonance, 264 · 10⁶ events

Raw Yield in Continuum and On-Resonance

Raw Yield in Continuum and On-Resonance

Average Charmed Meson per B Decay

Subtract continuum from On-Resonance data:

Raw Yield in Continuum and On-Resonance

Total Cross Section

	produ	uction			
D^0	1448	± 2	± 64	±38 pb	includes
D^{+}	654	± 1	± 36	±46 <i>pb</i>	decays of
$D_{\rm s}^+$	231	± 2	±92	±77 pb	D ^{*+} and D ^{*0}
Λ^{*}_{C}	189	± 1	± 66	±66 <i>pb</i>	
D^{*_0}	510	± 3	± 84	±39 <i>pb</i>	
D^{*_+}	597	± 2	± 78	±25 <i>pb</i>	

same, within systematic uncertainties

Primary D⁰ and D⁺

Subtract yield from $D^{*0} \rightarrow D^{0}$ and $D^{*+} \rightarrow D^{0}/D^{+}$ from D^{0} and D^{+} spectra

Primary produced D⁰ and D⁺ agree reasonably, remaining difference due to neglected higher resonances ?

With new tune ("probability of producing a charmed meson with spin=1") excellent agreement btw. data and MC

no parameter in MC to tune these ratios

- changing to Bowler improved slightly, but still large differences
- something more fundamental not modelled ??

MC Comparison

- reweighting technique: mimic different fragmentation function/parameters than used during generation of events
- allows comparison with functions not included in MC
- 5 functions:
 Peterson et al., Lund, Bowler,
 Kartvelishvili et al. and Collins and Spiller

MC Parameter

Function Bowler Parameter in Minimum

(a|b)=(0.12|0.58) $\chi^2/d.o.f.=188/60$

Kartvelishvili

 $\alpha_{c} = 4.0$ $\chi^{2}/d.o.f. = 861/60$

Peterson

 $\epsilon_{\rm c}$ =0.039 χ^2 /d.o.f.=2230/60

X_p other two btw. Bowler and Kartvel.

LEP Accelerator Performance

integrated luminosity over 11 years, one good day @ b-factories ! ~ 4 · 10⁶ events @ 91.2 GeV per experiment

Selection of B Hadrons @ 91.2 GeV

 B hadrons have many decay modes, more than charmed hadrons, many multibody

exclusive reconstruction not practical

- B hadrons have long lifetime compared to light quarks
 - →production and decay vertices separated mixture of all B hadrons in tagged sample still contamination by charmed hadrons

Status @ ICHEP '02

... but not much changed since

Overview: model test χ^2 /d.o.f.

	ALEPH	DELPHI (prelim.)			OPAL	SLD
		x_{wd}	x_L	\boldsymbol{z}		
Bowler	2 <u>1</u> 2	35/8	43/8	1/2	67/44	17/15
Lund	8	42/8	53/8	2/2	75/44	17/15
UCLA		07 07	25 23			27/17
Kartvelishvili et al.	107/94	13 <u></u> 2	19 <u>4</u>	36/3	99/45	32/16
Peterson et al.	117/94	287/9	245/9	187/3	159/45	70/16
BCFY			:			105/16
Collins/Spiller	181/94	21 <u>1</u> 11	2 <u>4</u> 22	536/3	407/45	142/16
Herwig 6 cldir=1		()(()	540/46	
Herwig 5 cldir=1	h a U h			3. 	4279/46	149/17
Herwig 5 cldir=0	0 	1 <u></u>	3 1	. <u> </u>	2530 2 1 30	1015/17

same ranking observed by all experiments!

(fragm. function parameters: rough agreement)

3 parameter fit: relative contributions from bb and gluon and $\epsilon_{\rm c}$ parameter of Peterson frag.fcn. $\epsilon_{\rm c} = (33.9 \pm 3.7) \cdot 10^{-3}$ for comparison: Belle @ 10.6 GeV $\epsilon_{\rm c} = 54 \cdot 10^{-3}$

Comparisons between different Energies hep-ph/0510032

 ◆ direct comparison of spectra at different energies not possible:
 -different phase space
 -different scales (CME)
 → evolution via DGLAP

-ISR corrections substantially different

Comparisons between different Energies, cont'd

previous corrections applied:

after all \rightarrow remaining difference !

Mellin Moments

defines as

$$D_{N} \equiv \int x_{P}^{N-1} f(x_{P}) dx_{P}$$

pert. and non-pert. effects factorize
high moments stress high x region
non-perturbative parts of fragmentation function (e.g. transition of quark->meson)
Note: perturbative part different in e⁺e⁻, ep and pp, non-perturbative part same !

Difference between 91.2 GeV and 10.6 GeV

empirical fit: 1/(1+0.044(N-1)) dependence

source unclear, data inbetween 10.6 and 91.2 needed to resolve 1/E or 1/E² corrections

Summary

new, precise measurement of charm fragmentation function at √s = 10.6 GeV
conclusions for charm @ 10.6 GeV and beauty @ 91.2 GeV in good agreement: -Bowler or Lund frag.fcns. prefered
-Peterson disfavoured

 differences between charm @ 10.6 GeV and charm @ 91.2, yet unresolved