Collective Flow, R_{AA} and Heavy Flavor Rescattering

Hendrik van Hees

Texas A&M University

April 28, 2005

Outline

- Open Charm and Bottom
 - Motivation
 - Chiral Heavy-Quark Model
 - Heavy-quark rescattering in QGP
 - Non-photonic e^{\pm} Observables: v_2 and R_{AA}
 - Conclusions and Outlook I
- 2 Bottomonia at RHIC
 - Dissociation Cross Sections
 - Rate Equation
 - Υ vs. J/ψ at RHIC
 - Conclusions and Outlook II

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
- What is the underlying microscopic mechanism for thermalization?
 - pQCD elastic HQ scattering: need unrealistically large α_s [Moore, Teaney '04]
 - \bullet Gluon-radiative energy loss: need to enhance transport coefficient \hat{q} by large factor [Armesto et al '05]

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
- What is the underlying microscopic mechanism for thermalization?
 - pQCD elastic HQ scattering: need unrealistically large α_s [Moore, Teaney '04]
 - \bullet Gluon-radiative energy loss: need to enhance transport coefficient \hat{q} by large factor [Armesto et al '05]
- Assumption: survival of D- and B-meson resonances in the sQGP
- facilitates elastic heavy-quark rescattering

Free Lagrangian: Particle Content

• Chiral symmetry $SU_V(2) \otimes SU_A(2)$ in light-quark sector of QCD

$$\mathscr{L}_D^{(0)} = \sum_{i=1}^2 [(\partial_\mu \Phi_i^\dagger)(\partial^\mu \Phi_i) - m_D^2 \Phi_i^\dagger \Phi_i] + \text{massive (pseudo-)vectors } D^*$$

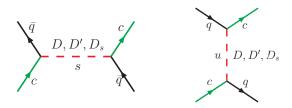
- ullet Φ_i : two doublets: pseudo-scalar $\sim inom{\overline{D^0}}{D^-}$ and scalar
- ullet Φ_i^* : two doublets: vector $\sim inom{\overline{D^{0*}}}{D^{-*}}$ and pseudo-vector

$$\mathcal{L}_{qc}^{(0)} = \bar{q}i\partial q + \bar{c}(i\partial - m_c)c$$

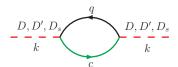
- q: light-quark doublet $\sim \binom{u}{d}$
- c: singlet

Interactions

- Interactions determined by chiral symmetry
- For transversality of vector mesons: heavy-quark effective theory vertices


$$\begin{split} \mathcal{L}_{\mathrm{int}} &= -\,G_S\left(\bar{q}\frac{1+\rlap/v}{2}\Phi_1c_v + \bar{q}\frac{1+\rlap/v}{2}\mathrm{i}\gamma^5\Phi_2c_v + h.c.\right) \\ &- G_V\left(\bar{q}\frac{1+\rlap/v}{2}\gamma^\mu\Phi_{1\mu}^*c_v + \bar{q}\frac{1+\rlap/v}{2}\mathrm{i}\gamma^\mu\gamma^5\Phi_{2\mu}^*c_v + h.c.\right) \end{split}$$

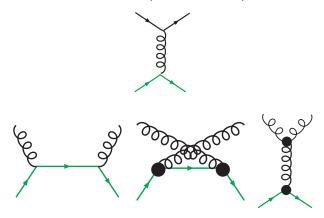
- v: four velocity of heavy quark
- in HQET: spin symmetry $\Rightarrow G_S = G_V$



Resonance Scattering

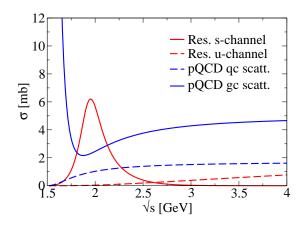
elastic heavy-light-(anti-)quark scattering

• D- and B-meson like resonances in sQGP



- parameters
 - $m_D = 2 \text{ GeV}, \; \Gamma_D = 0.4 \dots 0.75 \; \text{GeV}$
 - $m_B = 5 \text{ GeV}, \; \Gamma_B = 0.4 \dots 0.75 \text{ GeV}$

Contributions from pQCD


• Lowest-order matrix elements (Combridge '79)

• In-medium Debye-screening mass for t-channel gluon exchange: $\mu_q = gT$, $\alpha_s = 0.4$

Hendrik van Hees (Texas A&M University) Collective Flow, R_{AA} and Heavy Flavor Res April 28, 2005 7 / 26

Cross sections

- total pQCD and resonance cross sections: comparable in size
- resonance scattering more effective for friction and diffusion

The Fokker-Planck Equation

heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t, \vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t, p) + \frac{\partial}{\partial p_j} B_{ij}(t, \vec{p}) \right] f(t, \vec{p})$$

Assumption: Relevant scattering processes are soft

The Fokker-Planck Equation

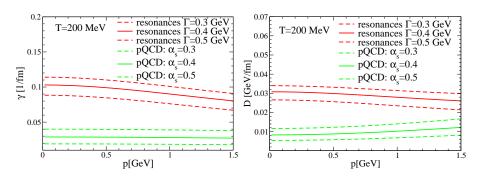
heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t, \vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t, p) + \frac{\partial}{\partial p_j} B_{ij}(t, \vec{p}) \right] f(t, \vec{p})$$

- Assumption: Relevant scattering processes are soft
- A and B_{ij} given by averages with matrix elements (cross sections) from resonance model
- ullet A(t,p) friction (drag) coefficient $=1/ au_{\sf eq}$
- ullet B_{ij} : time scale for momentum fluctuations

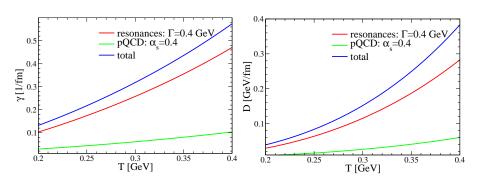
The Fokker-Planck Equation

heavy particle (c,b quarks) in a heat bath of light particles (QGP)


$$\frac{\partial f(t, \vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t, p) + \frac{\partial}{\partial p_j} B_{ij}(t, \vec{p}) \right] f(t, \vec{p})$$

- Assumption: Relevant scattering processes are soft
- A and B_{ij} given by averages with matrix elements (cross sections) from resonance model
- ullet A(t,p) friction (drag) coefficient $=1/ au_{\sf eq}$
- B_{ij} : time scale for momentum fluctuations
- to ensure correct equilibrium limit: $B_1(t,p) = T(t)E_pA(t,p)$ (Einstein dissipation-fluctuation relation)

Drag and Diffusion: pQCD vs. resonance scattering


• 3-momentum dependence

• resonance contributions factor $\sim 2...3$ higher than pQCD!

The Coefficients: pQCD vs. resonance scattering

Temperature dependence

Time evolution of the fire ball

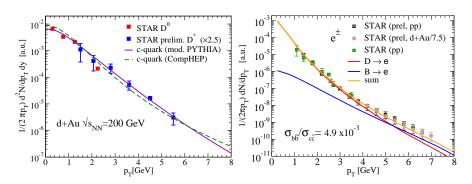
 Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb '00]

$$V(t) = \pi(z_0 + v_z t)a(t)b(t), \quad a, b$$
: half-axes of ellipse, $v_{a,b} = v_{\infty}[1 - \exp(-\alpha t)] \mp \Delta v[1 - \exp(-\beta t)]$

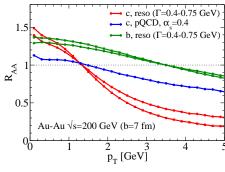
Time evolution of the fire ball

 Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb '00]

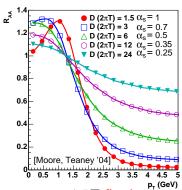
$$V(t) = \pi(z_0 + v_z t) a(t) b(t), \quad a, b$$
: half-axes of ellipse, $v_{a,b} = v_{\infty} [1 - \exp(-\alpha t)] \mp \Delta v [1 - \exp(-\beta t)]$


- Isentropic expansion: S = const (fixed from N_{ch})
- QGP Equation of state:

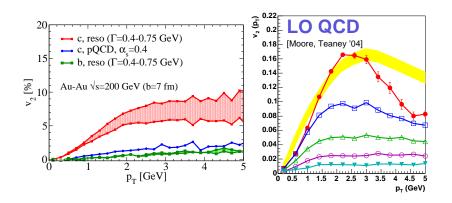
$$s = \frac{S}{V(t)} = \frac{4\pi^2}{90}T^3(16 + 10.5n_f^*), \quad n_f^* = 2.5$$


- obtain $T(t) \Rightarrow A(t, p)$, $B_0(t, p)$ and $B_1 = TEA$
- for semicentral collisions (b=7 fm): $T_0=340$ MeV, QGP lifetime $\simeq 5$ fm/c.
- simulate FP equation as relativistic Langevin process

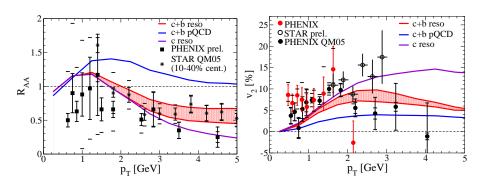
Initial conditions


- ullet need initial p_T -spectra of charm and bottom quarks
 - (modified) PYTHIA to describe exp. D meson spectra, assuming δ -function fragmentation
 - ullet exp. non-photonic single- e^\pm spectra: Fix bottom/charm ratio

Spectra and elliptic flow for heavy quarks



- $\mu_D = gT$, $\alpha_s = g^2/(4\pi) = 0.4$
- resonances ⇒ c-quark thermalization without upscaling of cross sections
- Fireball parametrization consistent with hydro


- $\mu_D = 1.5T$ fixed
- $2\pi TD \simeq \frac{3}{2\alpha_s^2}$

Spectra and elliptic flow for heavy quarks


Observables: p_T -spectra (R_{AA}) , v_2

- Hadronization: Coalescence with light quarks (fixed before [Greco et al 03]) + fragmentation ($c\bar{c}$, $b\bar{b}$ conserved)
- single electrons from decay of *D* and *B*-mesons

Observables: p_T -spectra (R_{AA}) , v_2

- Hadronization: Fragmentation only
- ullet single electrons from decay of D- and B-mesons

Conclusions and Outlook I

- Assumption: survival of resonances in the (s)QGP
- nonperturbative re-interactions of heavy quarks in QGP
- Observables via Langevin approach and coalescence+fragmentation
 - Elastic resonance scattering $\Rightarrow R_{AA}^{(c)} \simeq 0.2, \ v_2^{(c)} \simeq 0.1$ without upscaling of cross sections
 - small effects on bottom quarks
 - ullet Heavy-light quark coalescence enhances $v_2^{(e)}$ and R_{AA} for $p_T \simeq 2~{
 m GeV}$
 - bottom dominates for $p_T > 3.5 \; {\rm GeV} \Rightarrow {\rm reduced \; suppression}, \; v_2^{(e)}$
- For details, see: HvH, R. Rapp, Phys. Rev. C 71, 034907 (2005) [nucl-th/0412015],
 - HvH, V. Greco, R. Rapp [nucl-th/0508055,hep-ph/0510050]

Conclusions and Outlook I

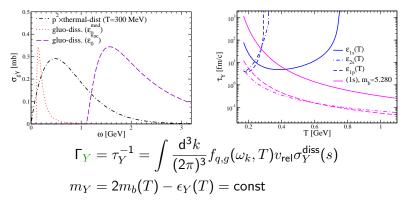
- Assumption: survival of resonances in the (s)QGP
- nonperturbative re-interactions of heavy quarks in QGP
- Observables via Langevin approach and coalescence+fragmentation
 - Elastic resonance scattering $\Rightarrow R_{AA}^{(c)} \simeq 0.2, \ v_2^{(c)} \simeq 0.1$ without upscaling of cross sections
 - small effects on bottom quarks
 - ullet Heavy-light quark coalescence enhances $v_2^{(e)}$ and R_{AA} for $p_T \simeq 2~{
 m GeV}$
 - bottom dominates for $p_T >$ 3.5 GeV \Rightarrow reduced suppression, $v_2^{(e)}$
- For details, see: HvH, R. Rapp, Phys. Rev. C 71, 034907 (2005) [nucl-th/0412015],
 HvH, V. Greco, R. Rapp [nucl-th/0508055,hep-ph/0510050]
- Further investigations
 - improved (softer) fragmentation
 - better control of coalescence/fragmentation ratio
 - implementation of gluon-radiation processes
 - quantitative consequences for quarkonia

Bottomonia at RHIC

- Matsui & Satz (1986):
 Quarkonia suppression due to colour screening as signature of QGP in heavy-ion collisions
- ullet sQGP: from IQCD Qar Q resonances survive at $T>T_c$

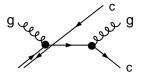
Bottomonia at RHIC

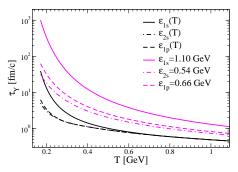
- Matsui & Satz (1986):
 Quarkonia suppression due to colour screening as signature of QGP in heavy-ion collisions
- ullet sQGP: from IQCD Qar Q resonances survive at $T>T_c$
 - J/ψ and η_c "melt" at $T_{\rm diss}^{(J/\psi)} \simeq 2T_c$
 - Υ : $T_{\rm diss}^{\Upsilon} \simeq 4T_c$
- Resonances facilitate secondary regeneration of quarkonia in QGP


Bottomonia at RHIC

- Matsui & Satz (1986):
 Quarkonia suppression due to colour screening as signature of QGP in heavy-ion collisions
- ullet sQGP: from IQCD Qar Q resonances survive at $T>T_c$
 - \bullet J/ψ and η_c "melt" at $T_{\rm diss}^{(J/\psi)} \simeq 2T_c$
 - Υ : $T_{\mathsf{diss}}^{\Upsilon} \simeq 4T_c$
- Resonances facilitate secondary regeneration of quarkonia in QGP
- $c\bar{c}$ recombination substantial part of final J/ψ yield at RHIC [Braun-Munzinger et al 01, Thews et al 01, Grandchamp, Rapp 01]
- J/ψ suppression dominant at SPS
- Bottomonium at RHIC? similar to Charmonium at SPS?

Dissociation Cross Sections


- Need Dissociation Cross Sections to evaluate ↑ yield
- Usual mechanism: Gluo dissociation (in dipole approximation)
- Problem: becomes inefficient for loosely bound states


• $\epsilon_Y(T)$ from Schrödinger eq. with screened Cornell potential [Karsch, Mehr, Satz 88]

Dissociation Cross Sections

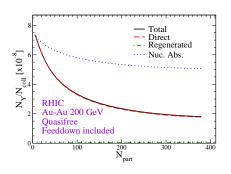
 breakup mechanism for loosely bound states: quasifree dissociation

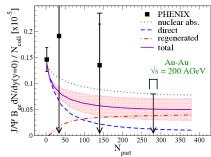
use LO pQCD cross sections for elastic scattering [Combridge 79]

Color screening reduces ↑ lifetime by factor of 10!

Rate Equation

Rate Equation (detailed balance!)


$$\frac{\mathrm{d}N_Y}{\mathrm{d}t} = -\Gamma_Y \Big[\underbrace{N_Y}_{\text{loss}} - \underbrace{N_Y^{\text{(eq)}}_Y}_{\text{gain}} \Big]$$


• Fugacities for $b\bar{b}$ -pair number conservation

$$N_{b\bar{b}} = \frac{1}{2} \gamma_b N_{\rm open} \frac{I_1(\gamma_b N_{\rm open})}{I_0(\gamma_b N_{\rm open})} + \gamma_b^2 N_{\rm hidden}$$

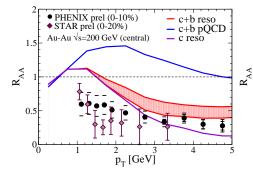
• Initial conditions from hard production only $(m_b \gg T_0)$

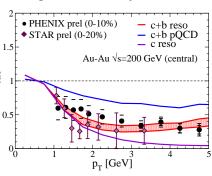
Υ vs. J/ψ at

[Grandchamp et al 03]

- Suppression prevalent effect
 - color screening in QGP
 - ullet suppression of higher bottomonia and feeddown to Υ
- with vacuum Υ: thermal suppression for Υ negligible magnitude of suppression sensitive to color screening
- J/ψ : yield dominated by regeneration

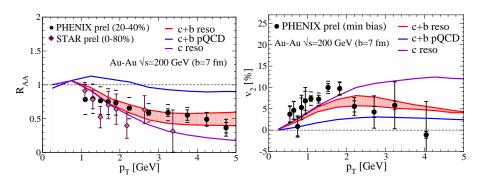
Conclusions and Outlook II

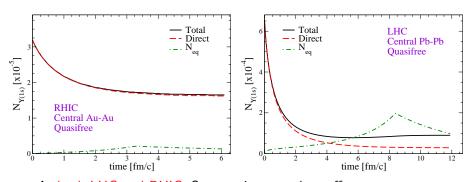

- rate-equation approach to evaluate ↑ abundances
- Suppression predominant effect at RHIC (and LHC)
- At LHC: substantial fraction of total ↑ yield due to regeneration
- Color screening main microscopic mechanism for suppression
- For details see: L. Grandchamp, , S. Lumpkins, D. Sun, HvH., R. Rapp [hep-ph/0507314]


Conclusions and Outlook II

- rate-equation approach to evaluate ↑ abundances
- Suppression predominant effect at RHIC (and LHC)
- At LHC: substantial fraction of total ↑ yield due to regeneration
- Color screening main microscopic mechanism for suppression
- For details see: L. Grandchamp, , S. Lumpkins, D. Sun, HvH., R. Rapp [hep-ph/0507314]
- Future work
 - more microscopic approach for dissociation-regeneration processes
 - p_T spectra (v_2) for bottomonia

Backup Slides


- Central Collisions
- single electrons from decay of *D* and *B*-mesons
- Hadronization:Coalescence + fragmentation
- Hadronization: Fragmentation only



Observables: p_T -spectra (R_{AA}) , v_2

- Hadronization: 0.5Coalescence + fragmentation ($c\bar{c}$, $b\bar{b}$ conserved)
- single electrons from decay of *D* and *B*-mesons

↑ evolution RHIC vs. LHC

- At both LHC and RHIC: Suppression prevalent effect
- mostly due to Debye screening of color potential