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Motivation

Measured pT spectra and v2 of non-photonic single electrons

coalescence model describes data under assumption of thermalized c
quarks, flowing with the bulk medium

What is the underlying microscopic mechanism for thermalization?

pQCD elastic HQ scattering: need unrealistically large αs
[Moore, Teaney ’04]
Gluon-radiative energy loss: need to enhance transport coefficient q̂ by
large factor [Armesto et al ’05]

Assumption: survival of D- and B-meson resonances in the sQGP

facilitates elastic heavy-quark rescattering
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Free Lagrangian: Particle Content

Chiral symmetry SUV (2)⊗ SUA(2) in light-quark sector of QCD

L
(0)
D =

2∑
i=1

[(∂µΦ†i )(∂
µΦi)−m2

DΦ†iΦi] + massive (pseudo-)vectors D∗

Φi: two doublets: pseudo-scalar ∼
(

D0

D−

)
and scalar

Φ∗i : two doublets: vector ∼
(

D0∗

D−∗

)
and pseudo-vector

L (0)
qc = q̄i/∂q + c̄(i/∂ −mc)c

q: light-quark doublet ∼
(
u
d

)
c: singlet
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Interactions

Interactions determined by chiral symmetry

For transversality of vector mesons:
heavy-quark effective theory vertices

Lint =−GS

(
q̄
1 + /v

2
Φ1cv + q̄

1 + /v

2
iγ5Φ2cv + h.c.

)
−GV

(
q̄
1 + /v

2
γµΦ∗1µcv + q̄

1 + /v

2
iγµγ5Φ∗2µcv + h.c.

)
v: four velocity of heavy quark

in HQET: spin symmetry ⇒ GS = GV
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Resonance Scattering

elastic heavy-light-(anti-)quark scattering

q̄

c q̄

c

D, D′, Ds

s

cq

qc

u D, D′, Ds

D- and B-meson like resonances in sQGP

c

q

D, D′, Ds D, D′, Ds

k k

parameters
mD = 2 GeV, ΓD = 0.4 . . . 0.75 GeV
mB = 5 GeV, ΓB = 0.4 . . . 0.75 GeV
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Contributions from pQCD

Lowest-order matrix elements (Combridge ’79)

In-medium Debye-screening mass for t-channel gluon exchange:
µg = gT , αs = 0.4
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Cross sections

1.5 2 2.5 3 3.5 4
√s [GeV]
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b]

Res. s-channel
Res. u-channel
pQCD qc scatt.
pQCD gc scatt.

total pQCD and resonance cross sections: comparable in size

BUT pQCD forward peaked ↔ resonance isotropic

resonance scattering more effective for friction and diffusion
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The Fokker-Planck Equation

heavy particle (c,b quarks) in a heat bath of light particles (QGP)

∂f(t, ~p)

∂t
=

∂

∂pi

[
piA(t, p) +

∂

∂pj
Bij(t, ~p)

]
f(t, ~p)

Assumption: Relevant scattering processes are soft

A and Bij given by averages with matrix elements (cross sections)
from resonance model

A(t, p) friction (drag) coefficient = 1/τeq

Bij : time scale for momentum fluctuations

to ensure correct equilibrium limit: B1(t, p) = T (t)EpA(t, p)
(Einstein dissipation-fluctuation relation)
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Drag and Diffusion: pQCD vs. resonance scattering

3-momentum dependence
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resonance contributions factor ∼ 2 . . . 3 higher than pQCD!
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The Coefficients: pQCD vs. resonance scattering

Temperature dependence
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Time evolution of the fire ball

Elliptic fire-ball parameterization
fitted to hydrodynamical flow pattern [Kolb ’00]

V (t) = π(z0 + vzt)a(t)b(t), a, b: half-axes of ellipse,

va,b = v∞[1− exp(−αt)]∓∆v[1− exp(−βt)]

Isentropic expansion: S = const (fixed from Nch)

QGP Equation of state:

s =
S

V (t)
=

4π2

90
T 3(16 + 10.5n∗f ), n∗f = 2.5

obtain T (t) ⇒ A(t, p), B0(t, p) and B1 = TEA

for semicentral collisions (b = 7 fm): T0 = 340 MeV,
QGP lifetime ' 5 fm/c.

simulate FP equation as relativistic Langevin process
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Initial conditions

need initial pT -spectra of charm and bottom quarks

(modified) PYTHIA to describe exp. D meson spectra, assuming
δ-function fragmentation
exp. non-photonic single-e± spectra: Fix bottom/charm ratio
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Spectra and elliptic flow for heavy quarks
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upscaling of cross sections
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µD = 1.5T fixed

2πTD ' 3
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s
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Spectra and elliptic flow for heavy quarks
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Observables: pT -spectra (RAA), v2

Hadronization: Coalescence with light quarks
(fixed before [Greco et al 03])
+ fragmentation (cc̄, bb̄ conserved)

single electrons from decay of D- and B-mesons
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Observables: pT -spectra (RAA), v2

Hadronization: Fragmentation only

single electrons from decay of D- and B-mesons
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Conclusions and Outlook I

Assumption: survival of resonances in the (s)QGP
nonperturbative re-interactions of heavy quarks in QGP
Observables via Langevin approach and coalescence+fragmentation

Elastic resonance scattering ⇒ R
(c)
AA ' 0.2, v

(c)
2 ' 0.1

without upscaling of cross sections
small effects on bottom quarks

Heavy-light quark coalescence enhances v
(e)
2 and RAA for pT ' 2 GeV

bottom dominates for pT > 3.5 GeV ⇒ reduced suppression, v
(e)
2

For details, see: HvH, R. Rapp, Phys. Rev. C 71, 034907 (2005)
[nucl-th/0412015],
HvH, V. Greco, R. Rapp [nucl-th/0508055,hep-ph/0510050]

Further investigations

improved (softer) fragmentation
better control of coalescence/fragmentation ratio
implementation of gluon-radiation processes
quantitative consequences for quarkonia
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Bottomonia at RHIC

Motivation

Matsui & Satz (1986):
Quarkonia suppression due to colour screening as signature of QGP in
heavy-ion collisions

sQGP: from lQCD QQ̄ resonances survive at T > Tc

J/ψ and ηc “melt” at T
(J/ψ)
diss ' 2Tc

Υ: TΥ
diss ' 4Tc

Resonances facilitate secondary regeneration of quarkonia in QGP

cc̄ recombination substantial part of final J/ψ yield at RHIC
[Braun-Munzinger et al 01, Thews et al 01, Grandchamp, Rapp 01]

J/ψ suppression dominant at SPS

Bottomonium at RHIC?
similar to Charmonium at SPS?
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Dissociation Cross Sections

Need Dissociation Cross Sections to evaluate Υ yield

Usual mechanism: Gluo dissociation (in dipole approximation)

Problem: becomes inefficient for loosely bound states
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ΓY = τ−1
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∫
d3k

(2π)3
fq,g(ωk, T )vrelσ

diss
Y (s)

mY = 2mb(T )− εY (T ) = const

εY (T ) from Schrödinger eq. with screened Cornell potential
[Karsch, Mehr, Satz 88]
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Dissociation Cross Sections

breakup mechanism for loosely bound states:
quasifree dissociation

g
c

c

g

use LO pQCD cross sections for elastic scattering [Combridge 79]
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Color screening reduces Υ lifetime by factor of 10!
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Rate Equation

Rate Equation (detailed balance!)

dNY

dt
= −ΓY

[
NY︸︷︷︸
loss

−N (eq)
Y︸ ︷︷ ︸

gain

]
Fugacities for bb̄-pair number conservation

Nbb̄ =
1

2
γbNopen

I1(γbNopen)

I0(γbNopen)
+ γ2

bNhidden

Initial conditions from hard production only (mb � T0)
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Υ vs. J/ψ at

0 100 200 300 400
N

part
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]
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Quasifree
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[Grandchamp et al 03]
Suppression prevalent effect

color screening in QGP
suppression of higher bottomonia and feeddown to Υ

with vacuum Υ: thermal suppression for Υ negligible
magnitude of suppression sensitive to color screening

J/ψ: yield dominated by regeneration
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Conclusions and Outlook II

rate-equation approach to evaluate Υ abundances

Suppression predominant effect at RHIC (and LHC)

At LHC: substantial fraction of total Υ yield due to regeneration

Color screening main microscopic mechanism for suppression

For details see: L. Grandchamp, , S. Lumpkins, D. Sun, HvH., R.
Rapp [ hep-ph/0507314]

Future work

more microscopic approach for dissociation-regeneration processes
pT spectra (v2) for bottomonia
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Backup Slides

Central Collisions

single electrons from decay of D- and B-mesons

Hadronization:
Coalescence + fragmentation
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Observables: pT -spectra (RAA), v2

Hadronization: 0.5Coalescence
+ fragmentation (cc̄, bb̄ conserved)

single electrons from decay of D- and B-mesons
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Υ evolution RHIC vs. LHC
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At both LHC and RHIC: Suppression prevalent effect

mostly due to Debye screening of color potential
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