Heavy Flavor Production in Nuclear Collisions

Jörg Raufeisen (Heidelberg U.)

RBRC Workshop on Heavy Flavor Production & Hot/Dense Quark Matter, Dec. 12–14, 2005

Introduction

- Measurements of heavy quark production are an invaluable source of information.
- Initial state:
 - Heavy quark production allows one to study the poorly known gluon distributions of protons and nuclei.
 - Hadroproduction of heavy quarks at high energies can be formulated in terms of the same dipole cross section as low-x DIS.
 - The advantage of the dipole formulation is that it is formulated in terms of interaction eigenstates. This simplifies the calculation of multiple scattering effects.
- Final state:
 - The theory of medium-induced gluon radiation can be written in terms of the dipole cross section. (B.G. Zakharov)
 - Use well-developed dipole phenomenology to estimate the contribution of radiative energy loss to quenching.

The Dipole Approach to DIS and k_T -Factorization

• At low x, photon-gluon fusion $(\gamma^* + G \rightarrow q + \bar{q})$ dominates over $\gamma^* + q \rightarrow q + G$ and the DIS cross section can be written as,

$$\frac{d\sigma_L^{\gamma^* p}}{d^2 p_T} = \frac{4\alpha_{em} e_f^2 Q^2}{\pi} \int d\alpha \alpha^2 (1-\alpha)^2 \int \frac{d^2 k_T}{k_T^4} \alpha_s \mathcal{F}(x,k_T) \left[\frac{1}{p_T^2 + \varepsilon^2} - \frac{1}{(\vec{p}_T - \vec{k}_T)^2 + \varepsilon^2} \right]^2$$
$$= \int d\alpha \int \frac{d^2 \rho_1 d^2 \rho_2}{2(2\pi)^2} \Psi^*(\alpha,\rho_1) \Psi(\alpha,\rho_2) e^{i\vec{p}_T \cdot (\vec{\rho}_1 - \vec{\rho}_2)} \left[\sigma_{q\bar{q}}(\rho_1) + \sigma_{q\bar{q}}(\rho_2) - \sigma_{q\bar{q}}(|\vec{\rho}_1 - \vec{\rho}_2|) \right]$$

with

$$\sigma_{q\bar{q}}(x,\rho) = \frac{4\pi}{3} \int \frac{d^2k_T}{k_T^4} \alpha_s \mathcal{F}(x,k_T) \left[1 - e^{i\vec{k}_T \cdot \vec{\rho}}\right]$$

- The dipole cross section $\sigma_{q\bar{q}}(x,\rho)$ carries information about the k_T dependence of the gluon distribution.
- Probably, any process that probes $\mathcal{F}(x, k_T)$ can be written in terms of $\sigma_{q\bar{q}}(x, \rho)$.

Jörg Raufeisen, RBRC Workshop on Heavy Flavor Production, Dec. 12-14, 2005

The Dipole Cross Section

- I use the DGLAP improved saturation model of Bartels, Golec-Biernat, Kowalski, Phys. Rev. D66: 014001, 2002 for $v_{qq(w),r}$ $\sigma_{q\bar{q}}^{N}(x,\rho) = \sigma_{0} \left\{ 1 - \exp\left(-\frac{\pi^{2}\rho^{2}\alpha_{s}(\mu)xG(x,\mu)}{3\sigma_{0}}\right) \right\}_{z}^{\text{figs}} 2$ 30.0 $x=10^{-2}$ ---25.0 20.0 15.0 10.0 $\sigma_0 = 23 \,\mathrm{mb}$ 5.0 $\mu^2 = \frac{\lambda}{\rho^2} + \mu_0^2$ 0.0 0.2 0.4 0.6 0.8 1.2 1.4 0 1
- The gluon density $xG(x,\mu)$ evolves according to DGLAP.
- The perturbative QCD result is recovered at small ρ :

$$\sigma^N_{q\bar{q}}(x,\rho) \to \frac{\pi^2}{3} \alpha_s(\mu) \rho^2 x G(x,\mu)$$

 ρ (fm)

Blättel, Baym, Frankfurt, Strikman, Phys. Rev. Lett. 70, 896, 1993.

Fit to HERA Data (Bartels et al.)

Jörg Raufeisen, RBRC Workshop on Heavy Flavor Production, Dec. 12-14, 2005

Heavy Quark Production at High Energies

At high energies, heavy quark pairs $(Q\overline{Q})$ are predominantly produced through gluon-gluon fusion:

The amplitude reads (Kopeliovich, Tarasov, NPA710:180,2002)

$$\begin{aligned} \mathcal{A}_{ij}^{a}(\alpha,\vec{p}_{T},\vec{k}_{T}) &= \int d^{2}r d^{2}b e^{i\vec{p}_{T}\cdot\vec{\rho}-i\vec{k}_{T}\cdot\vec{b}}\Psi(\alpha,\rho) \left\{ \delta_{ae}\delta_{ij} \left[\gamma^{e}(\vec{b}-\alpha\vec{\rho}) - \gamma^{e}(\vec{b}+(1-\alpha)\vec{\rho}) \right] \right. \\ &+ \frac{1}{2}d_{aeg}T_{ij}^{g} \left[\gamma^{e}(\vec{b}-\alpha\vec{\rho}) - \gamma^{e}(\vec{b}+(1-\alpha)\vec{\rho}) \right] \\ &+ \frac{i}{2}f_{aeg}T_{ij}^{g} \left[\gamma^{e}(\vec{b}-\alpha\vec{\rho}) + \gamma^{e}(\vec{b}+(1-\alpha)\vec{\rho}) - 2\gamma^{e}(\vec{b}) \right] \end{aligned}$$

with the profile function

$$\gamma^{e}(\vec{b}) = \frac{\sqrt{\alpha_{s}}}{4\pi} \int \frac{d^{2}k_{T}}{k_{T}^{2}} e^{i\vec{k}_{T}\cdot\vec{b}} F^{e}_{GN\to X}(\vec{k}_{T}) \quad , \quad \sigma_{q\bar{q}}(\rho) = \int d^{2}b \sum_{X} \sum_{e=1}^{8} \left| \gamma^{e}(\vec{b}+\vec{\rho}) - \gamma^{e}(\vec{b}) \right|^{2}$$

The Dipole Approach to Heavy Quark Production

• The result for the $Q\overline{Q}$ cross section is, (Nikolaev, Piller, Zakharov, JETP 81, 851, 1995):

$$\frac{d\sigma(pp \to Q\overline{Q} + X)}{dy_{Q\overline{Q}}} = x_1 G(x_1, \mu_F) \int_0^1 d\alpha d^2 \rho \left| \Psi_{G \to Q\overline{Q}}(\alpha, \rho) \right|^2 \sigma_{q\bar{q}G}(x_2, \alpha, \rho)$$

 $- \ \alpha$: Light-Cone momentum fraction of the heavy quark Q

 $-~\rho:$ transverse size of the $Q\overline{Q}$ pair

$$- \left| \Psi_{G \to Q\overline{Q}}(\alpha, \rho) \right|^2 = \alpha_s(\mu_R) / (4\pi^2) \left\{ \left[\alpha^2 + (1-\alpha)^2 \right] m_Q^2 K_1^2(m_Q \rho) + m_Q^2 K_0^2(m_Q \rho) \right\}$$

- and

$$\sigma_{q\bar{q}G}(x_2,\alpha,\rho) = \frac{9}{8} \left[\sigma_{q\bar{q}}(x_2,\alpha\rho) + \sigma_{q\bar{q}}(x_2,(1-\alpha)\rho) \right] - \frac{1}{8} \sigma_{q\bar{q}}(x_2,\rho).$$

• General rule:

$$\sigma(a+N\to bcX) = \int d\Gamma \left|\Psi_{a\to bc}(\Gamma)\right|^2 \sigma_{bc\bar{a}}^N(\Gamma)$$

- Γ : set of all internal variables of the (bc)-system
- $\Psi_{a \rightarrow bc}$: Light-Cone wavefunction for the transition $a \rightarrow bc$
- $-\sigma^N_{bc\bar{a}}$: cross section for scattering the $bc\bar{a}$ -system off a nucleon

Jörg Raufeisen, RBRC Workshop on Heavy Flavor Production, Dec. 12-14, 2005

Theoretical Uncertainties

JR, J.C. Peng, Phys. Rev. D67, 054008, 2003

• Large uncertainties for open charm production from choice of m_c

 $1.2 \text{ GeV} \le m_c \le 1.8 \text{ GeV}, \ m_c \le \mu_R \le 2m_c, \ \mu_F = 2m_c$ $4.5 \text{ GeV} \le m_b \le 5.0 \text{ GeV}, \ m_b \le \mu_R, \mu_F \le 2m_b$

• Dipole Approach valid only at high energies (HERA-B energy too low)

Multiple Scattering and Nuclear Effects

- When switching from a proton to a nuclear target, the profile function $\gamma_N^a(b)$ for a nucleon needs to be replaced by the profile function for a nucleus $\gamma_A^a(b)$
- Hence $\sigma^N_{q\bar{q}}(\rho) \to \sigma^A_{q\bar{q}}(\rho)$ and

$$\sigma_{q\bar{q}G}^{N}(\rho) = \frac{9}{8} \left[\sigma_{q\bar{q}}^{N}(\alpha\rho) + \sigma_{q\bar{q}}^{N}((1-\alpha)\rho) \right] - \frac{1}{8} \sigma_{q\bar{q}}^{N}(\rho)$$
$$\rightarrow \sigma_{q\bar{q}G}^{A}(\rho) = \frac{9}{8} \left[\sigma_{q\bar{q}}^{A}(\alpha\rho) + \sigma_{q\bar{q}}^{A}((1-\alpha)\rho) \right] - \frac{1}{8} \sigma_{q\bar{q}}^{A}(\rho)$$

- The advantage of the (ρ, α) representation is, that one can calculate $\sigma_{q\bar{q}}^{A}(\rho)$ from $\sigma_{q\bar{q}}^{N}(\rho)$.
- In the limit of very high energy, all partons move along straight lines and pick up only a (color) phase factor as they move through the nucleus. Averaging over the target is done as in Glauber theory,

$$\sigma_{q\bar{q}}^{A}(\rho) = 2 \int d^2b \left\{ 1 - \exp\left(-\frac{\sigma_{q\bar{q}}^{N}(\rho)T(b)}{2}\right) \right\}.$$

 At finite energy, one has to solve the Dirac (Klein-Gordon) equation for quarks (gluons) propagating through an external color field in the (non-abelian) Furry approximation: Terms of order 1/E are neglected, except in phase factors. This accounts for variations of the transverse size of partonic configurations.

Jörg Raufeisen, RBRC Workshop on Heavy Flavor Production, Dec. 12-14, 2005

Shadowing in DIS vs. Heavy Quark Shadowing

• In DIS, shadowing is caused by the aligned jet configurations, where either $\alpha \to 0$ or $\alpha \to 1$

$$|\Psi_{\gamma^* \to q\bar{q}}(\alpha, \rho)|^2 \propto \exp(-2\varepsilon\rho).$$

Extension parameter:

$$\varepsilon^2 = \alpha (1 - \alpha)Q^2 + m_q^2.$$

These aligned jet configurations are shadowed even for $Q^2 \to \infty.$

That is why shadowing in DIS is leading twist.

• In heavy quark production however

$$\left|\Psi_{G\to Q\overline{Q}}(\alpha,\rho)\right|^2 \propto \exp(-2m_Q\rho).$$

The heavy quark mass cuts off large fluctuations. Multiple scattering of the $Q\overline{Q}$ pair is suppressed by powers of $1/m_Q^2$. Hence, eikonalization of $\sigma_{q\bar{q}}^N$ alone does not give the complete picture of heavy quark shadowing.

Mechanisms of Nuclear Suppression

• $Q\overline{Q}$ rescattering:

• $Q\overline{Q}G \ (\approx GG)$ rescattering:

Inclusion of Higher Fock States

- Higher Fock states are included in the parametrization of $\sigma_{q\bar{q}}^{N}(x,\rho)$.
- However, the rescattering of these higher Fock states is neglected in the eikonal approximation.
- This can be cured by the following recipe:

$$\sigma_{q\bar{q}}^{A}(x,\rho) = 2 \int d^{2}b \left\{ 1 - \exp\left(-\frac{\sigma_{q\bar{q}}^{N}(x,\rho)\widetilde{T}(b)}{2}\right) \right\},\,$$

where

$$\widetilde{T}(b) = T(b)R_G(x,b)$$

and $R_G(x, b)$ is the leading twist gluon shadowing, calculated from the propagation of a GG dipole through a nucleus.

• Expansion of the nuclear dipole cross section:

$$\sigma_{q\bar{q}}^{A}(x,\rho) = \frac{\pi^{2}}{3}\alpha_{s}\rho^{2}\int d^{2}bT(b)R_{G}(x,b)xG_{N}(x) - \frac{\pi^{2}\alpha_{s}^{2}}{36}\rho^{4}\int d^{2}b\left[T(b)R_{G}(x,b)xG_{N}(x)\right]^{2} + \dots$$

Already the single scattering term is suppressed due to gluon shadowing.

Gluon Shadowing

Kopeliovich, JR, Tarasov, Johnson, Phys. Rev. C67, 014903, 2003

- No gluon shadowing at $x_2 > 0.01$, because of short l_c .
- The dipole approach predicts much smaller gluon shadowing than most other approaches.
- The gluon can propagate only distances of order of a constituent quark radius (~ 0.3 fm) from the $Q\overline{Q}$ -pair. This overcompensates the color factor 9/4 in the interaction strength.
- The smallness of the gluon correlation radius is the only known way to explain the tiny Pomeron-proton cross section ($\approx 2 \text{ mb}$).

Suppression of Open Charm and Bottom in pA Collisions

JR, J. Phys. G30(2004)S1159

- Dashed curves: Gluon Shadowing only
- Solid curves: Total suppression (including $Q\overline{Q}$ rescattering and Gluon Shadowing)
- Gluon Shadowing reduces the probability for $Q\overline{Q}$ rescattering.

Medium induced gluon radiation

Distinguish 3 different regimes: Baier, Schiff, Zakharov, Ann. Rev. Nucl. Part. Sci. 50:37,2000
 1. E < ω_{BH} ~ few-hundred MeV: Bethe Heitler applies,

$$-\left(\frac{dE}{dz}\right)_{BH} \sim \frac{\alpha_s C_R E}{\lambda_{free}}.$$
(1)

2.
$$\omega_{BH} \ll E \ll \omega_{LPM} = \hat{q}L^2 \sim \begin{cases} 5 \text{ GeV (cold)} \\ 50 \text{ GeV (hot, longitudinally expanding medium)} \end{cases}$$
:
$$-\left(\frac{dE}{dz}\right)_{LPM_1} \sim \alpha_s C_R \sqrt{\hat{q}E}. \qquad (2$$

This is the same E dependence as for the LPM effect in QED.

3. $\omega_{LPM} \ll E$:

$$-\left(\frac{dE}{dz}\right)_{LPM_2} \sim \alpha_s C_R \hat{q} L. \tag{3}$$

 \Rightarrow No effect from initial state energy loss expected at large \sqrt{S} .

Estimate of the BDMPS transport coefficient

• The transport coefficient \hat{q} and the dipole cross section $\sigma_{q\bar{q}}(r_T^2) = Cr_T^2$ are both related to the average color-field strength $\langle F^2 \rangle$ in the medium JR, PLB557,184(2003),

$$C = \frac{\pi^2}{3} \alpha_s \langle F^2 \rangle \tag{4}$$

$$\hat{q} = 2\rho_A \frac{\pi^2}{3} \alpha_s \langle F^2 \rangle \tag{5}$$

- The dipole approach has a highly developed and successful phenomenology in DIS, Drell-Yan, heavy flavor production, total hadronic cross sections, color transparency Kopeliovich et al. PRL.88:232303,2002
- Use KST parameterization of $\sigma_{q\bar{q}}$ to determine \hat{q} . Kopeliovich et al. PRD62,054022(2000)

$$\hat{q} \approx 0.2 \frac{\text{GeV}}{\text{fm}^2}$$

Higher order corrections make \hat{q} weakly energy dependent, $\hat{q} \propto E^{0.08}$.

The transport coefficient in heavy ion collisions

• In HIC, a medium with high energy density is created. Bjorken's estimate of the initial energy density at RHIC yields

$$\epsilon_{Bj} = \frac{\langle m_T \rangle}{\pi R_A^2 \tau_0} \left(\frac{dN}{dy}\right)_{y=0} \approx 10 \,\text{GeV}/\,\text{fm}^3 \approx 60\epsilon_{cold} \tag{6}$$

at initial time $\tau_0 = 0.5$ fm.

• Because of the expansion of the medium, the hard parton sees an averaged transport coefficient,

$$\hat{q}^{med} = \frac{2\hat{q}}{L^2} \int_{\tau_0}^{\tau_0 + L} d\tau (\tau - \tau_0) \frac{\tau_0}{\tau}.$$
(7)

Salgado, Wiedemann, PRL89,092303(2002)

• The averaged transport coefficient is then

$$\hat{q}^{med} \approx 10\hat{q}^{cold} \approx 2 \operatorname{GeV}/\operatorname{fm}^2.$$
 (8)

 $\hat{q} \gtrsim 20 \,\text{GeV}/\,\text{fm}^2$ is needed to reproduce pion quenching at RHIC. (Armesto et al, hep-ph/0511257)

Summary

- At high energies, heavy quark production can be formulated in terms of the same color dipole cross section as low-x DIS.
- The cross section for heavy quark production in pp collision is well described in this approach.
- The dipole cross section is an eigenvalue of the diffraction amplitude operator ⇒ easy calculation of multiple scattering effects.
- The dipole approach takes into account both, leading twist gluon shadowing and higher twist rescattering of the $Q\overline{Q}$ pair.
- Initial state effects yield $\sim 10\%$ suppression at RHIC.
- Initial state energy loss is irrelevant at RHIC energy.
- Estimates of the BDMPS transport coefficient suggest that induced gluon radiation account only for a small part of quenching for light and heavy flavors.