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Abstract. A major upgrade is being planned for the PHENIX experiment that will have greatly 
enhanced physics capabilities to measure jets in relativistic heavy ion collisions at RHIC, as 
well as in polarized proton interactions, and eventually electron ion collisions at an Electron 
Ion Collider. This upgrade, sPHENIX, will include two new calorimeter systems. One will be a 
hadronic calorimeter, which will be the first hadronic calorimeter ever used in an experiment at 
RHIC, and another will be a new compact electromagnetic calorimeter. Both calorimeters will 
cover a region of ±1.1 in pseudorapidity and 2 in phi. The hadron calorimeter will be based 
on scintillator plates interspersed between steel absorber plates and read out with wavelength 
shifting fibers. The electromagnetic calorimeter will be an accordion design that will utilize 
scintillating fibers embedded in a matrix consisting of tungsten plates, tungsten powder and 
epoxy. The readout for both calorimeters will use silicon photomultipliers. The overall design 
of these two calorimeter systems is described along with the R&D efforts currently being 
pursued to develop them along with their readout. 

1. Introduction 
 
   The PHENIX Experiment is planning a major new upgrade that will greatly enhance its physic 
capabilities for measuring jets in heavy ion collisions at RHIC, and well as in polarized proton 
interactions, and eventually in electron ion collisions at an Electron Ion Collider. This upgrade, called 
sPHENIX [1], will involve removing the current PHENIX central magnet and two central 
spectrometer arms and replacing them with a new superconducting solenoid magnet and two new 
calorimeter systems,  one electromagnetic and the other hadronic, that will cover approximately ± 1.1 
units in pseudorapidity and 2 in phi. The hadronic calorimeter will be the first hadronic calorimeter 
ever used in an experiment at RHIC and will, for the first time, provide the ability to measure the total 
energy of jets produced in heavy ion collisions, and allow a detailed study of the Quark Gluon Plasma 
near the region of its critical temperature. The electromagnetic calorimeter will be located just outside 
the solenoid magnet at a radius of 95 cm. These calorimeters, along with the VTX silicon tracking 
detector from the current PHENIX experiment, will form the basis of the new central spectrometer for 
sPHENIX. Figure 1 shows this new configuration with the present PHENIX North and South Muon 
Arms still in place. However, there are also additional plans to upgrade both of these arms in the future 
to enhance the capabilities of sPHENIX for pA, polarized proton and EIC physics. 



 
 
 
 
 
 

                        
 
Figure 1.  New central detectors for the sPHENIX Experiment with the present PHENIX North and 
South Muon Arms still in place. The yellow and red objects are the inner and outer sections of the 
hadron calorimeter and the dark grey cylinder is the electromagnetic calorimeter. The white cylinder is 
the superconducting solenoid and the small inner cylinder near the beam pipe is the current PHENIX 
VTX detector.  

2. Detector requirements 
 
   The design of the two calorimeter systems is driven by the detector requirements to perform the 
physics measurements in the sPHENIX experiment. The primary goal is to measure jets in heavy ion 
collisions, which places demands on the energy resolution and segmentation of both the EMCAL and 
the HCAL. However, for events containing jets in heavy ion collisions, there is a significant amount of 
energy deposited in the calorimeter from the large number of particles produced in the underlying 
event of accompanying soft collisions. Various sophisticated algorithms have been developed to 
subtract this background energy from the total energy measured for the jet, but ultimately, the 
fluctuations on this energy limits the jet energy resolution. As a result, the calorimeter energy 
resolution need not be better than the limitations imposed on the jet energy resolution by the 
fluctuations in the energy of the underlying event. This leads to a requirement of ~ 100%/√E for the 
HCAL and ~ 15%/√E for the EMCAL for measuring the jet energy. Other physics measurements, such 
as measuring -jet correlations and direct photons at high pT (pT > 10 GeV/c) are also consistent with 
these requirements. The requirements on the segmentation are ×~ 0.1×0.1 for the HCAL and 
×~ 0.025×0.025 for the EMCAL, which are mainly driven again by the high particle multicity in 
heavy ion collisions. For other physics measurements, such as measuring heavy quarkonia, tagged 
heavy flavor jets and high-z fragmentation functions, an additional tracking system that would add 
additional layers of silicon tracking to the current VTX detector would be required, and is being 
pursued as a future upgrade option. In addition, a future preshower detector would be added that 
would enable the measurement of high pT 0’s (pT up to ~ 40 GeV/c) and also provide the capability of 
resolving the high mass states. 
   We have performed a full GEANT4 simulation of the sPHENIX detector and used this to study the 
expected performance of the two calorimeter systems. The EMCAL was simulated using a simple 
geometry consisting of cylindrical layers of absorber and scintillator, as opposed to the actual 
geometry as described below, but with the same sampling fraction as the real calorimeter will have. 
The hadronic calorimeter was simulated using the actual geometry of the proposed design. 
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  Fig 4 shows the layered structure of the tungsten scintillating fiber accordion design. It consists of 1 
mm scintillating fibers embedded in a matrix of tungsten powder and epoxy that is glued between two 
thin (~ 1 mm) accordion shaped tungsten plates that have a length of ~ 1.4 m (half the length of the 
calorimeter) along the beam direction. The thickness of the tungsten-epoxy layer increases with depth, 
thus providing a projective geometry in the r- plane. The fibers are placed in a fan-like arrangement 
along the beam direction such that they point back towards the intersection region. Seven of the layer 
structures are glued together to form towers, then several towers are glued together to form modules, 
which are then assembled together in a ring to form the complete calorimeter.  
   Figure 5 shows an example of a tungsten powder epoxy layer containing several scintillating fibers 
that was produced by Tungsten Heavy Powder [2], which is a company that we are working with to 
develop the various calorimeter components. The results so far have been extremely encouraging in 
terms of producing thin tungsten sheets with embedded layers of scintillating fibers and tungsten 
powder epoxy that can be formed an accordion shape. During the coming year, we plan to build a 
prototype calorimeter module consisting of a 5x5 array of ~ 2x2 cm2 towers that will be placed in a 
test beam in order to carry out a detailed study of its properties. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Accordion layer (top) containing tungsten powder epoxy and embedded scintillating fibers. 
 
 
   In the accordion configuration, the light output of the fibers is of primary concern, since it is 
important to have sufficient light output to achieve good energy resolution. We have studied the light 
output from various types of fibers embedded in different types of epoxies in a geometry similar to 
that of the accordion calorimeter. We find that the light output from the fibers is significantly reduced 
when they are embedded in the epoxy, mainly due to the loss of the cladding light, and the resulting 
light yield is ~ 100 photoelectrons per MeV of energy deposit in the scintillator when the fibers are 
read out directly with a photomultiplier tube. With a sampling fraction of ~ 4% in our current design, 
this corresponds to ~ 4000 p.e./GeV of energy deposit in the calorimeter. However, we will need to 
randomize and collect the light from approximately 150 fibers from a roughly 2x2 cm2 tower onto a 
single 3x3 mm2 SiPM within a very short distance (~ 2-3 cm). We plan to do this with either a small 
reflecting cavity or a wavelength shifting block at the back of the calorimeter tower. Assuming only a 
geometrical factor of 2% for the light collection (which we expect will be much higher with either the 
reflecting cavity or the WLS block), and a factor of 2.5 higher photon detection efficiency for the 
SiPM relative to the PMT, we should be able achieve a light yield ~ 200 p.e./GeV for the calorimeter, 
which is sufficient to not affect the overall energy resolution.  
 



 
 
 
 
 
 

5. Electronics and Readout 
 
    Both the EMCAL and the HCAL will use silicon photomultipliers for their readout. We are 
currently investigating devices from different manufacturers, but a device such as the 3x3 mm2 
Hamamatsu S10362-33-025C would be suitable. It contains 14.4K 25 m micropixels, which would 
provide a dynamic range of a few times 103, and a photon detection efficiency of ~ 25%. Each SiPM 
will have its own biasing circuit, temperature sensor and preamp. The temperature sensor will be used 
to measure the temperature locally and apply a small correction voltage to the bias in order to achieve 
gain equalization and stability. We are considering two different readout systems at the present time, 
one which is based on an existing PHENIX ADC system (previously used for the PHENIX Hadron 
Blind Detector) and another that would use a new custom designed ASIC (currently being developed 
by PHENIX collaborators at Oak Ridge National Lab) that would provide a preamp for the SiPMs 
which would be read out using the Beetle chip as an analog buffer and the CERN Scalable Readout 
System (SRS).  Both readout systems are currently being investigated and a complete readout chain 
will be tested during the coming months.   

6. Summary and Conclusions 
 
  The PHENIX Experiment at RHIC is planning a major upgrade that will include two new calorimeter 
systems. One will be a hadronic calorimeter that will provide a measurement of the total energy of jets 
produced in heavy ion collisions for the first time at RHIC, and a new electromagnetic calorimeter that 
will provide an independent measurement of the electromagnetic energy. Both calorimeters will cover 
a region of ± 1.1 units in pseudorapidity and 2 in phi.  The requirements on the energy resolution for 
the two calorimeters is not particularly stringent due to the large background in measuring the jet 
energy from the fluctuations in the energy deposited in the calorimeter from the underlying event. The 
energy resolution requirement for measuring jets in the hadron calorimeter is ~ 100%/√E and ~ 
15%/√E for the electromagnetic calorimeter.  A preliminary design of both calorimeters has been 
completed and is included in the sPHENIX upgrade proposal that was submitted to Brookhaven 
National Laboratory in July of 2012, and will later be submitted as a Major Instrumentation and 
Equipment (MIE) proposal to the Nuclear Physics Office of the U.S. Department of Energy. R&D and 
further development on current design is proceeding and we expect to build and test prototypes of both 
calorimeters during the coming year.   
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