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Probing QGP with quarkonia
• The start:

– J/ψ anomalously suppressed in heavy ion collisions due to color screening 
if Quark Gluon Plasma is formed (Matsui & Satz PL B178 (1986) 416 )

– The NA38, NA50 and NA60 experiments at CERN SPS measured J/ψ
suppression in a variety of systems

J/ψ
L• Anomalous suppression

– ‘measured/expected’ J/ψ yield 
for light-light and heavy-light type 
collisions follow a universal scaling 
as a function of L 

– Trend is broken by central heavy-
heavy type collisions

– Models with no QGP have 
reproduced this behavior, so further 
investigation is needed
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J/ψ detection in PHENIX

Central Arms:
Hadrons, photons, electrons

J/ψ→ e+e-

|η|<0.35
pe > 0.2 GeV/c
Δφ=π(2 arms x π/2)

Forward rapidity Arms:
Muons

J/ψ → μ+μ-

1.2<|η|<2.2
pμ > 1 GeV/c
Δφ = 2π

Global detectors
Beam-Beam Counter (BBC)
Zero Degree Calorimeter (ZDC)
Reaction Plane Detector (RxNP)



E. T. ATOMSSA, Hard Probes, 06/12/08 p. 4/21

Contributions to J/ψ yield in HICs
• Production (RHIC energies)

– Mainly by gluon fusion (gg → J/ψ)
• Very early in nucleon-nucleon hard scatterings

– Feed down from excited states of charmonia, multiple measurements
• HERA-B : (χc → J/ψX ) ~ 21±5% and (ψ’ → J/ψX) ~ 7±0.4% (*)
• PHENIX prelim.: (χc→ J/ψX) <42%(90% CL) and (ψ’ → J/ψX) ~ 8.6 ± 2.5%
• …

• Gluon shadowing: modification of PDFs in nuclei
• Suppression

– Breakup by scattering on nucleons from initial heavy ions (J/ψ+N→X)

– Melting in QGP/dissociation by comovers

• Enhancement
– Possible recombination from uncorrelated c and c quarks

_
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J/ψ measurements in p+p collisions

• Why J/ψ in p+p?
– Constrain J/ψ production 

models

– Baseline to heavy ion yields
• Compared to a superposition of 

independent pp collisions

PRL98, 232002(2007)( )
tppcoll

tAB
tAB dydpNdN

dydpNdpyR 2
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Nuclear modification factor

Total cross section:

BRll•σtot = 178 ± 3stat ± 53sys ± 18norm nb

Bll is the J/ψ dilepton branching ratio (~12%)
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J/ψ production mechanism
• Constraints from data

– Most color singlet models underestimate total cross section
• A new approach allowing off-shell and non static heavy quarks to form 

quarkonium reproduces total cross section and polarization
(PRL 100, 032006 (2008)  cf. Talk by J-P. Lansberg )

– Color octet model, gets good cross section, but predicts transverse 
polarization at high pt, not seen yet

– Precision on rapidity dependence is starting to become good enough to 
bring useful constraint

PRL 98, 232002 (2007)

θ)λA(θddσ 2cos   1   cos/ +=
λ = +1 (transverse)

= -1 (longitudinal)

PHENIX Preliminary
1.2<|y|<2.2

New
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J/ψ from ψ’

Ψ’ →e+e-

ψ’->ee

J/ψ->ee
___________

PHENIX Theory

J/ψ from ψ’ 0.086±0.025 0.08 Digal et al., Phys. Rev. D 64 (2001) 94015
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J/ψ from χc

χc →J/Ψ + γ

Rχc

PHENIX Theory

J/ψfromχc <0.42(90% CL) 0.30 Digal et al., Phys. Rev. D 64 (2001) 94015
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Cold nuclear matter (CNM) effects

d Au• J/ψ suppression in d+Au: 
– Study CNM effects

• Shadowing, absorption/breakup

<x2> ~ 0.05-0.2

<x2> ~ 0.01-0.05

<x2> ~ 0.002-0.01

PRC 77, 024912 (2008)

( )
dydNN

dydNyR
ppcoll

dAu
dAu ×><

=

Ncoll(dAu) = 7.6 ±0.3

Example of prediction: gluons in Pb / gluons in p

x2

Anti
ShadowingShadowing

x2 : Momentum fraction in nucleusK.J. Eskola et al. Nucl. Phys. B535 (1998) 351
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Breakup cross-section
• Extraction method

– Rapidity dependence of RdAu

calculated (*) assuming a 
shadowing model EKS (**) or 
NDSG (#)

– Any additional suppression is 
accounted for by a single free 
parameter : break up cross-
section (σbreakup) 

• EKS => σbreakup =2.8 -1.4+1.7 mb
• NDSG => σbreakup = 2.2-1.5

+1.6 mb

– Compatible with SPS (##):

σabs = 4.2±0.5 mb

(Anti shadowing effect not taken 
into account in SPS calculation)

PRC 77 024912 (2008)

(**) K.J. Eskola et al., Nucl. Phys. A 696, 729 (2001)

(#) D. deFlorian et al., PRD, 69 074028 (2004)
(##) B. Alessandro et al., Euro. Phys. J. C48, 329 (2006) 

(*) R. Vogt, PRC, 71 054902 (2005)
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Coming up…
• New d+Au from very high luminosity run

– 30x the previously available statistics (80nb-1)

– Will bring a much stronger constraint on CNM

73,000 
J/ψ → µµ

For all 
data

63 nb-1

6,000 
J/ψ → ee
from all 

data

59 nb-1

200 GeV d+Au

Projected Run8 
d+Au J/ψ RdAu
improvement
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Au+Au and Cu+Cu collisions
Au+Au final: PRL 98, 232301(2007)
Cu+Cu prelim: nucl-ex/0801.0220

Bar: stat. + uncorrelated syst. errors
Band: correlated syst. Errors

• RAA summary plot : 
– J/ψ suppression 

measurements in Au+Au and 
Cu+Cu collisions at 
√sNN=200GeV

– Curves show the CNM 
constraint from d+Au data

– Suppression in most central 
Au+Au goes as far as by a 
factor of 5 at forward rapidity
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Two surprises
• Comparison to SPS

– RAA (RHIC, (|y|<.35) ≈ RAA (SPS)

– Not what’s expected from

εSPS < εRHIC

– Caution:
• Rapidity ranges not same 

0 < ysps < 1
• Different CNM effects

• Rapidity trend
– RAA (|y|<.35) > RAA (1.2<|y|<2.2)

– Challenge to most “local density”
based suppression models

• More matter at mid rapidity, should 
lead to more suppression there

Global error = 7%
Global error = 12%

Scomparin (proc. QM06) : nucl-ex/0703030

PRL 98, 232301 (2007)
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Model dependent extrapolation from d+Au
• Shadowing + σbreakup from RdAu fit used to get RAA

– Same theoretical framework as one used for RdAu

•
–

• Observations
– Statistically significant 

suppression observed at 
forward rapidity in AuAu

– Less clear in other 
cases

– Forward and mid 
extrapolation 
uncertainties correlated

– According to these 
models, anomalous 
suppression is higher at 
forward rapidity in 
Au+Au

PRC 77, 024912 (2008)

|y|<0.35(Au+Au)

|y|<0.35(Cu+Cu) 1.2<|y|<2.2(Cu+Cu)

1.2<|y|<2.2(Au+Au)
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Data driven extrapolation from d+Au
• Minimal model dependence 

– Modification depends only on local impact parameter

– Glauber model + rapidity symmetrization of d+Au points (*)
• RAA(±y,b) = (1/Ncoll)*ΣiRdA(-y,b1,i)xRdA(+y,b2,i)

– Suppression slightly higher than accountable by CNM effects at least at y=0
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PRC 77, 024912 (2008)

Err. Glo. = 7%

RAA/CNM =38 +18
– 22 % 

1.2<|y|<2.2

Err. Glo. = 12%

RAA/CNM=55 +23
–38 %

|y|<0.35

If we want minimal model dependence, RAA/CNM doesn’t exclude 
the same anomalous suppression at forward and mid rapidities.

(*) For method cf. R. Granier de Cassagnac, J.Phys.G34:S955-958,2007
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Alternate explanation
• Lattice QCD results suggest :

– No J/ψ suppression for T as high as 2.1Tc ( ≳ 10GeV/fm3)

– ψ’and χc  start melting at around 1.1Tc (attained both at RHIC & SPS)

– Suppression seen at RHIC & SPS may be only the feed down part

•

η=0

η=2

K. Tuchin :hep-ph/0402298

• Color Glass Condensate
– Charmed meson calculations based 

on CGC give higher mid rapidity 
yields (no final prediction for J/ψ)

– If valuable for J/ψ this should 
partly explain the forward/mid 
tendency, but is challenged by the 
saturating Forward/Mid rapidity RAA

– Quantitative prediction for J/ψ in 
d+Au and Au+Au is indispensable to 
draw conclusion
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Yet another explanation: regeneration

Au-Au 

• Why regeneration explains rapidity trend?
– Uncorrelated c and c quarks coalesce at hadronization

– At mid rapidity, more charm quarks => enhance the direct J/ψ yield

– Just an example below (*), a number of other models do as good a job (**)

(*) Capella et al.n, arXiv:0712.4331

_

cf. Talks by  R. Thews and K. Tywoniuk
(**) Without being exhaustive some of these models are listed below :
O. Linnyk et. al. arXiv:0801.4282; R. Thews et. al. Eur.Phys. JC43, 97 (2005); Yan et al. PRL 97, 232301 (2006); 
Andronic et. al. NPA789, 34(2007), Ravagli et al. arXiv:0705:0021; Zhao et. al. arXiv:0712.2450, 
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Testing regeneration with J/ψ flow
• Elliptic flow

– In non central collisions, almond 
shaped interaction region results 
in a pressure gradient

– More particles are emitted ‘in 
plane’ than ‘out of plane’

– Magnitude measured by v2

• J/ψ flow : promising 
test of regeneration
– Electrons from open c and b 

semileptonic decays show large 
nonzero elliptic flow

– J/ψ regenerated from c quarks 
should inherit their flow

c & b

Réa
cti

on
 P

lan
e ψ

RP

( )( )[ ]RP
tt

v
dydp
dN

dyddp
dN

Ψ−+≈ φ
φ

2cos21 2

( )( )RPvwhere Ψ−×= φ2cos2

Run 4 Final : PRL 98, 172301 (2007)

(cf. Talk by A. Dion)
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J/ψ flow results (1/2)
Bar : stat. + uncorrelated syst. errors
Band : correlated syst. errors

• Preliminary results cf. Talk by C. Silvestre

New
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J/ψ flow results (2/2)

• Preliminary results
– This is more of a proof of principle 

that the measurement is feasible

– Completely independent measurement 
techniques at forward & mid rapidity

• A slightly negative v2 observed at 
intermediate pT in both measurements

• Highest pt data points are compatible 
with zero to maximum flow predictions 
within errors

– Current precision doesn’t allow to 
draw strong conclusions. Much larger 
data sample, expected to be available 
in future runs, is required.

cf. Talk by C. Silvestre
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Summary
• Reviewed PHENIX results on quarkonia

– In p+p collisions, production baseline is measured
• J/ψ feed-down ratios from ψ’ and χc constrained from data

– In d+Au collisions, despite lack of statistics, data is used to extract
• J/ψ CNM σbreakup, comparable within errors to SPS measurement
• Extrapolation to Au+Au and Cu+Cu collisions 

– In Au+Au and Cu+Cu measurements:
• Very similar suppression to SPS at mid rapidity
• Higher suppression at forward rapidity than at mid rapidity
• RAA/CNM (abnormal suppression) difference b/n mid and forward not very clear

– Regeneration is a possible scenario to explain rapidity trend
• Many models describe data satisfactorily when regeneration is allowed
• A promising experimental test : J/ψ v2, so far limited by statistics 

• Outlook
– New d+Au data set (30x more statistics), better constraint on CNM effect

– Better precision on J/ψ v2 from larger statistics in future runs



Backup
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Measuring J/ψ flow (central rapidity)
• Estimate reaction plane

– New detector for event by event 
reaction plane determination

• Measure v2
– Nsig*v2,J/ψ= Nfg*v2,fg – Nbg*v2,bg(MJ/ψ)

– v2,fg = <cos(2*(φ-ΨRP))> of unlike 
sign pairs in J/ψ mass window

– v2,bg at Mj/ψ is interpolated from a 
polynomial fit outside of J/ψ mass 
window of like sign v2(m) 

• Correct for finite resolution 
– v2 = v2,meas / σRP, where

( )( )BRPARPRP 1,1,2cos2 Ψ−Ψ××=σ 24 segment plastic scintillator
1 < η < 2.8

φ-Ψ
RP
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Centrality classes
• Dividing total cross section according to centrality

– Use BBC charge vs. ZDC energy

– Ncoll : number of binary inelastic N-N collisions 

– Npart : number of nucleons that undergo inelastic collisions

– Glauber model + detector response simulation => <Npart> & <Ncoll>

Most central
0 - 5 %

< Npart > = 351.4 ± 2.9
< Ncoll > = 1065 ± 105

Most peripheral
80 - 92.2%

< Npart > = 6.3 ± 1.2
< Ncoll > = 4.9 ± 1.2
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Indirect comparisons to SPS

Satz

Rapp
Capella

J/ψ,ψ’,χc

All models for y=0 nucl-ex/0611020

• Test with RHIC data models that worked at SPS
– Most models are strongly challenged by the rapidity trend, and less 

suppression at mid rapidity

All calculations shown here 
give predictions at mid rapidity

• Digal, Fortunato, Satz
• hep-ph/0310354

• Capella, Ferreiro
• hep-ph/0505032

• Grandchamp, Rapp, Brown
• hep-ph/0306077

Bar : stat. + uncorrelated syst. errors
Band : correlated syst. errors
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Signal extraction
• Invariant mass spectra of μ+μ- and e+e-

(J/ψ branching ratio ~ 6% each)
• Combinatorial background subtracted by 

event mixing
• Fitted with:

– Gaussians for the mass peak 

– Exponentials for physical 
background (heavy flavor 
decay and/or Drell-Yan)

– Average value of various fits 
used as J/ψ count

– Dispersion is included in 
systematic errors.

J/ψ → e+e-J/ψ → μ+μ-

AuAuAuAu
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PHENIX J/ψ measurements summary
J/ψ counts J/ψ counts
(|y|<0.35) (1.2<|y|<2.2)

1 Au+Au 130 1µb-1
2 Au+Au 200 24µb-1 ~13

p+p 200 0.15pb-1 46 66 PRC69, 014901(2004)
3 d+Au 200 2.74nb-1 360 1200 PRL92, 051802(2004)

p+p 200 0.35pb-1 130 450 PRL96, 012304 (2006)
4 Au+Au 200 241µb-1 1000 4500 PRL 98, 232301(2007)

Au+Au 63 9µb-1

p+p 200 350nb-1

5 Cu+Cu 200 3nb-1 2000 9000 arXiv:0801.0220
Cu+Cu 62 0.19µb-1 ~146
Cu+Cu 22.5 2.7µb-1

p+p 200 3.8pb-1 1500 8000 PRL98,232002(2007)
6 p+p 200 10.7pb-1 ~2300 ~27000

p+p 62 0.1pb-1

7 Au+Au 200 800µb-1

8 d+Au 200 80nb-1 ~4400 ~57000
p+p 200

ReferenceRun Species √sNN[GeV] ∫Ldt
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PHENIX J/ψ’s from Run8

6,000 J/ψ
→ ee

from all 
data

59 nb-1

200 GeV d+Au

4.8 pb-1

13,000
J/ψ → µ+ µ-

for all data
(22,000 in Run6)

200 GeV p+p

73,000 
J/ψ → µµ

For all data

63 nb-1
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RHIC

• Heavy ion and polarized 
proton colliding machine
– 4 species: p+p, d+Au, Au+Au, Cu+Cu

– 6 energies: 9.2 GeV, 19 GeV, 22.5 
GeV, 62.4 GeV, 130 GeV, 200 GeV

Au+Au

Cu+Cu
STAR

PHENIX

PHOBOS BRAHMS
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RAA vs. Npart summary

Au+Au final: PRL 98, 232301(2007)
Cu+Cu prelim: nucl-ex/0801.0220
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