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Lecture 19
The simple har monic oscillator

So far our hamiltonians have been pretty simple. We have had the free particle hamiltonian with akinetic energy term.
and a spin hamiltonian with a spin-magnetic field interaction. We will now take up a case where we have both the kinetic
energy term and a x-dependent potential. A classical simple harmonic oscillator (SHO) has arestoring for F=-kx which is
proportional to the distance, giving us a potential energy term V(x) = % kx2. It isthe potential given by a stretched spring.
Where is such a potential useful in the quantum world. It turns out, just about everywhere. The strong interaction makes
quarks stick together in the form of protons and neutrons (hadrons) - a good approximation to the potential isjust asimple
harmonic oscillator potential. Atomswhich jiggle around in acrystal |attice can be thought of as held in place by a bunch
of springs. In fact if one expands any potential in apower series, the first symmetric termisjust the SHO.

It turns out that the SHO is a problem which is readily solvable (unlike just about all other potentials - the coulomb
potential being another one which is semi-solvable as you will see) so we tend to model anything force which is attractive
with a SHO or coulomb potential. OK so lets pretend we have two quarks and they are held together by the strong
interaction - i.e. with aforce which grows linearly with distance. (Heavy quarks like bottom are well modeled by a 3-D
version of the model we are now going to build ; we will stay in 1-D to make things easy. BTW one reason you don't see
free quarksis that the energy you put into two quarks to pull them apart is large - large enough that is easier to pull apair
of quarks out of the vacuum, thereby giving you two pairs). These quarks can also have kinetic energy so we will start out
our model with a hamiltonian as follows:

2
H= 2”—m+V(x) where V(x):% mw? x> misthe mass of the quark, and k = mw? isthe "spring" constant which will have
to be measured in an experiment. Note that % mw? X2 hastheunitsof energy if mismassand w isa frequency. Now we
will just assume now that the p and x will be operators so

H = Ep?zﬂ— + % mw? % in the quantum world. Now its a pain working with two quarks, so we can always work in athe
CM system where the mis areduced mass and just pretend that its just one quark moving around afixed point. If you
dont know what | am talking about, go back to some freshman physics book and look up reduced mass.

OK. Now we have a hamiltonian and let our quark be represented by some state |@). Later we will have to specify some
sort of initial condition and then find the time dependence.

The brute force way isto write this thing in the x representation as

;2%2_ %‘l +% mw? K2y (X)=Ey(X) where y(x)=(x|a). It works, its a pain. Thereis amuch cleverer and easier way of
doing it using raising and lowering operators.

L ets define a couple of new operators as follows:

b= 2o (X+%) and  a'=/D (X—%‘) [wewill call 4 alowering operator and & araising operator)
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The reverse egns for reference are X=4/ 2% (@' +4a) and p=i+/ mT”‘" (CUS:

Then remembering that [%,pl=i%  [a, a']=-= (~[% P+[p.&)=1

i \oafae Mo g2, P2 i _mwegr P 1_ A _1
We can also define the number operator N = &' a= m (% + —— + mw[x, p])_ m Ke+ =

A

So FI:hcu(N+%)

We seeimmediately that [H,N]=0 so we can have eigenkets of H which are also eigenkets of N and we will label the
eigenketsof both H and N as|ny sothat

Nin)=nin)  and it follows that H [n) = icw(n + %)|n> sothe eigenvaluesof H are E, =fiw(n + %)

Now why do we call these thing raising and lowering operators. Lets see:
[N,a]=[a a,a]=a'[a,a]+[a' ,a]a=-a and [N,af]=[afaaf]=aaa']+[a' al]a=a"

So Naf|ny =(a’+a'N)|n) =a’(n+1)|ny =(n+1)a’iny so &' jny~|n+1) i.e. itraisesitastep! Thereisa~ there because
thereis still anormalization constant to figure out. Similarly

Nan) =(-a+aN)|n) =a(n-1)|n) =(n-1)an) so an)~|n-1) i.e. itsalowering operator.

Sometimes these things are call annihilation and creation operators because they either create of destroy one quantum of
energy. Now lets figure out the normalization constant.

let c bethe constant so  &jn)=c|n-1). We want both (n|n)=1 and (n-1|n-1)=1 so
(nja'ainy= |cPn-1n-=|cl®> but (nj&a am =(n|N m=nniny=n  soc=vn
Alsoweknow [4,a"=1 - aa'=1+a’a=1+N

let af|n)=cin+1) so(n|aa’n) = |c?(n+ln+)=|c> but (n]aa’in)=(n|N+1jn=(n+1)(njn)=n+1 o
c=vn+1 andfinally summing up

aT|n>=\/ n+1|n+l) and a|n)=\/ﬁln—l>

Now if we can just figure out some lowest energy state, we can just bootstrap our way up by using the raising operators!
So lets see if we can formulate an argument.

First we can show that n must be an integer: For the moment lets call ajn)=|a’). Now we dont know if thisthing is
normalized (it isn't as we know from above) but we do know that (@|@)=0 - n=(n| N | n)=(nja’ an)=(al@)=0 so
n=0

Next we know that if we start is some |n) then we can use the lowering operator as follows
any=vn|n-1)
a2Iny=vVn(n - 1) [n-2)

any=vn(n—1)(n-2)|n-3) etc. This can keep going forever, UNLESS at some point the number inside the ket is zero,
then the series will terminate.

Putting this together with the fact that n>0 meansthat the series MUST terminate at n=0. Therefore n=0 is the lowest
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energy state where we want to start our bootstrap.

So the ground stateis |0) with energy eigenvalue Eg = % fw Itisstriking that the lowest energy state isNOT zero! This

has implications as we ask how what things look like at zero temperature - what the state of the vacuum is, dark energy,
the casmir force etc etc.

Now we can just work our way up to all the other eigenstataes:

H=a"|0) E;= g how

2 :% 1) = <5‘T> 0 Er=3ho
=L = S0 E=Lnw
[ny= &L <a> |0) En_(n+ 2) hw

Matrix representation of SHO operators

Now letslook at some particular ways of writing some of these things down. Letsfirst look at the matrix representation of
the SHO operators, using the eigenkets |n) as the basis. The lowest number n can be is zero, so the rows and columns will
be numbered, 0,1,2,... A space withaoisaO.

0 oo o o 1/2 O O O m|
ol oo o O 3/2 O |
Ni(n'|N|n")i oo 2 0 O I:|i<n'|I:||n")i O O 5/2 0O O fiw
OO0 oo O ] ] O ]
O o oo n'! m] m] o o n'+1/2
ovi o o o 00 g
0 o V2 o Vi o o oo
(n'1alm=vn dyp1= n'1a' m=vVn+1éyna=| o V2 o o o
mn o O o 3 o n,n+
o o o o O ] o 3 oo
o o ] o O ] ] o O O
and using %=/ ﬁ @"'+a and  p=iy M m”“’ (@' -a Weg
V1o o O
ﬁ o V2 o o
. . [ & = _ [ &
(n*| X[ ny= m( n+15n‘,n+1+\/ﬁén',n—l)— 2me O \/5 O \/E O
] ] 3 o O
O ] ] o O
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o -1 ] ] ]
1 O -V 2 O m|
MIpIm= S (VN4 L nna VN dun )=y 5= | o v2 o 3 o
] O A3 O ]
O O O O O

Note that %, p, &, &' al are not diagonal. This makes sense because they al do not commutewith N (or H). Asa
reminder, these matrices are all infinite dimensional. Letslook at how thisworks, | will only make my matrices 4x4, but in
your mind let the rows and columns go to infinity. Letstake alook at the raising and lower operator and see what they do.

O O O o o
\/T O o O O é i
The|0) hasalintheOthrow. &'0)=| o /2 o 0o o o =/1 e /1 |1)As expected the raising
| | 3 00O 0 0
0O O O o 0O
0
- . . 0 . .
operator movesthe 1" up to the next row. Doing it again would give /2 1 = +/22). Using the lowering operator
0
would "lower" the row by one. The expectation value for energy for |2) is
1/2 m] m] m] 0
A el o 3/2 o o 0 _ _ 1
(2IA12)=(0 0 1 0) - 2 s/ o , ha)_5/2hcu_(2+2)hw
O O O 7/2 0

We avoided solving the differential egn which would give us the wave function in position representation - becauseitisa
pain. It turns out, thisraising and lowering operator also makes finding the wave functions easier. Remember we decided
that n=0 was the ground state and we know a]0)=+/0|-1)=0. Writing this in position representation gives

(x'1a] 0=y 3= (x |x+'ﬁ’|o) 1/%(<x'|sz|o>+$<x'|p|o>)

Now (x' | | 0)=(x" | %] 0)TT=(0 | K" | x»T=(0| x| x)»T=x(0| x)'=x'(x|0) and (x'| p|0)= L L(x'|0) s0

T v
(x'1al 0=/ 22 (x'(x'|0>+f‘; %O("O» and finally (X' + Xo2 %)(XWO):O where xg = 4/ -2 L
The solution to thisis a gaussian:

(X'| 0) —( 1/4\/_ )exp[—— (—) ] (check it). We can just use the raising operator to find the rest:

XI=(x |87 0=/ 22 (x| k= 22 | O)=y[ 2= (x| %] 0) = = (x| p| O))=y/ 2 (x(x]0)- -2 L (x|0))

= Jas) ¢~ % 5o )x10)
. . \ _ 1 1 . 2 d \N ' \2
We can going and in general (x'| n) = ( 1/4m)(mn+1/2)(x Xo ) exp|- (XXO)]
X' = Ay H (&) €€ where ¢ = m“’o X2 An=(2“n!\/;)_1/2 and H,, (¢) are the Hermite polynomials
2 2 2

(X [0)= A€ T (X[D)=A 2§e‘% X2 = A4E 26T etc
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L ets figure out some stuff for the ground state |0)

(®)= 52— @' +2)=0 and <p>:i,/ e @ - a)=0

()= <aT al+afa+aa’+aa) = L (aahy= L (0aa'|0)= 2 0+ 1)1 1) =51 = 2
t?’2>=-"‘7““’<aT al-ala-aa'+aa) = me, (aah) = ““Th“’ (0 a4’ |0 = mThw (0+1) (1] 1) =

. . hw w2 K2 w2 w 1 i i
Thekmetlcenergy<2p >—fT=<';> and  (MeLi)mmet hcJe-0) g the energy is split for the ground state

between the potential energy and kinetic energy as expected from the virial theorem

Ax=f s5=  Ax=y/ T2 AxAp=2 (i.e itisat theminimum uncertainty by Heisenberg)

What to these wave functions look like?.

Here are afew
= 5 _4(22 ) =3 (202-3) _é((zs)zs)
O)=£ 2 1_ ZE"TX .226 xe=1 .3:f x(2x4- ,4=c 4(x4-3) x4+
(X'|0) 7 X1 a- X'12) L (X13) L X4 =

| have pl otted (X'|n=15). (See gm19work for the mathematicato figure out the wave functions and plot it)

e 2 x (252 (2(22 (2(8x8-420x4+8190 X2~ 75075) x2-+675675)2837835) x2-+4729725)-2027025)

X'[15)=
x115) 30240715 Y

S — O

-10 -5 5 10

| have also plotted the probability (in black) and the classical probability (in red). Now note that the classical probability is
really the mass that goes back and forth with time. The QM probability is the probability at t=0! So far thereis no time
dependence.
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Let's now add the time dependence for the eigenstates.

A A 1
n, t) = exp(- L) In, t=0) = exp(— ———'(Nﬂf)h‘”t ) In, t= 0> =g (™ 2)etn t=0)

From here we can immediately see that the time dependence of (X) and ( p) are equal to zero since we get
. 1 . 1
M tx|n, t>=<n | dmg)utggilnrg)ot ‘ n>:<n | X | ny=0 from before and similarly for (p)

Its more interesting if we look at the time dependence of the expectation values for amixture of states, e.g.

1
@) = Cq IN) + Cm M) wherewegetforthetlmedependence la, t) = c, € "(”+2)‘*"\n>+c g (Mgt

K= t ] @, =(cy” (0] €2 4 e (m] €™ 2300y €7 (7 2) ) 4y (7720 m)=

m

=Ch* G €@ M@t |KM)+Cy* ¢ € MW@t (m|xin) which will have non-zero components of n and m differ by 1
similarly (P, =Cn" Cm € "M« (n|pImy+Cy’* Cy € MVt (m | pin)

Lets take the case where n=0 and m=1 and |a) = % [0y + % 1)

1 h —iwt T 1 h jwt T -1 h —wt g A wty— h
R = 2 5= e 0ja’ +an+d \[ S detajal +a0)= 1 |/ S (et =/ - cosut

1 mhw ~—iwt T 1 mhow Lot T N mhw —lot_dowty= 1 mhw
<p>a/t E »\’ T e’ <O Ia - a|1>+5 | »\’ T e <1 Ié. é.|0> - E '\’ T (e lwl_gl )— > \’ sinwt

Letstake alook at these graphically, first the n=0
State
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then the n=1 state

-10 -5

then the sum

=L L
@ =210+ 1D

10

-10 -5

and the corresponding probability

10

10
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Now hereisaseries of plotsof (X) where wt =0, %, % 3% and

1-
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