
Notes for Quantum Mechanics
 Richard Seto

Date@D

82004, 11, 23, 11, 31, 28.3195952<

Lecture 18 
Time dependece of Expecation Values

d XA
` \ÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= d Ya,t »A` …a,t]

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt

= d X  a,t0  …U` †Ht,t0L A`  UHt,t0L`
 »  a,t0 \

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt

    Now we know that »  a, t0 \  is independent of time (by definition). Lets also 
assume that A

`
 does not have an explicit time dependence (e.g. it could be momentum, angular momentum-which we will 

learn about later, spin, position-watch it though, position does not commute with H
` L

and we remember the Schroedinger eqn for U
`

    Ñ dÅÅÅÅÅÅ
dt

U
`

 Ht, t0L= H
`

U
`

 Ht, t0L   and   the hermitian conjugate of this eqn     
- Ñ dÅÅÅÅÅÅ

dt
U
` †Ht, t0L= U

` †
 Ht, t0LH

`
    (remember that H

`
 is hermitian)

d XA
` \ÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
=X  a, t0 À d U

` †Ht,t0LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt

 A
`

 U
` Ht, t0L + U

` †Ht, t0L A
`

 dUHt,t0L`

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt

   »  a, t0 \=

1ÅÅÅÅÅÅ
Ñ
X  a, t0 … -U

` †
 H

`
A
`

 U
`

+ U
` †

 A
`

 H
`

 U
`

  »  a, t0 \=
iÅÅÅÅ
Ñ
X  a, t0 … U

` †
 H H` A

`
-A

`
 H

`
)U

`
  »  a, t0 \= iÅÅÅÅ

Ñ
X  a, t … AH` , A

` E   »  a, t \  So finally we have 

d XA
` \ÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
=   iÅÅÅÅ

Ñ
 YAH` , A

` E\    

This is an important theorem. It means that if any observable A
`
 commutes with H

`
 then its expectation value does not 

change with time - that is - it is a constant of motion.

Symmetry and conservation laws (an important aside)

This then leads to the connection between the properties of space and conservation laws. As I will show you, the 
homogeneity of space will lead to momentum conservation - i.e physics doesnt change depending on where you are, 
simillarly the fact that physics doesn't change when you rotate things leads to angular momentum conservation, and the 
fact that physics doesnt change with time will lead to energy conservation. There are other symmetry principles which   
lead to other conservation laws as well. Here I will show you these three. 

Lets think about translation. We will deal with infinitesimal translations for ease, but we can always generalize to finite 

translations. Remember we has that 
` HdxL|x\=|x+dx\ and that 

`
(dx) =1

`
-idx P

`
xÅÅÅÅÅÅÅÅ
Ñ

.   Now lets take some ket †a\. What does it 
mean that physics is the same everywhere - that is, that it is translationaly invariant? Well it means that if we get some 
answer for one of our invariant observables (lets take H

`
) then if we figure out that observable somwhere else, it should 

give the same answer. So for example, lets assume that  H
`

 is the free particle Hamiltonian which is just p̀2 ê 2 m . It has no 
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dependence on position. This means that if we take a ket †a\ and calculate XH` \ and then move the ket somewhere else 
using the translation operator, it should give the same answer. How do we move the ket 

`
? 

 
` †a\= `

Ÿ „ x '|x'\Xx'†a\=Ÿ „ x '
`
|x'\Xx'†a\ etc.

 So lets first look at XH` \ and the original location Ya » H
` » a]. Now if space is homogeneous the this should be the same as  

the expectation value for 
`
 †a\,  that is  Ya … ` †

 H
`

 
` … a].   So if  Ya … ` †

 H
`

 
` … a]=Ya » H

` » a], this means that  
` †

 H
`

 
`
=H

`
, 

so H
`

 
`

=
`

H
`

   (since 
`
 is unitary)  Ø [H

`
,

`
]=0 Ø [H

`
, px

` ]=0

 But using the theorem above we get that d X p̀x\ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt

=[H
`

, px
` ]=0 and momentum is conserved.

 We can do the same where we replace 
`
 with the unitary time evolution operator and get d XE\ÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
=0 , the conservation of 

energy. Later we will have a rotation operator which will lead to the conservation of angular momentum.

Free particle states

We now want to look at free particle states. What does this mean? It means where we start with a Hamiltonian that has no 
potential, i,e H

`
= p̀2 ê 2 m . Lets now find eigenkets and eigenvalues of this hamiltonian

p̀2
ÅÅÅÅÅÅÅÅÅ
2 m

»E\=E»E\   where the eigenvalues are the energies E, and we label the states with E.

Now we can put this in the x representation. I will do it slowly here. Remember Xx'§ p̀ » a\= ÑÅÅÅÅ
i

dÄÄÄÄÄÄÄÄÄ
dx'

Xx'|a\ and          Xx'§ 
p̀ » x ''\= ÑÅÅÅÅ

i
dÄÄÄÄÄÄÄÄÄ

dx'
Xx'|x''\= ÑÅÅÅÅ

i
dÄÄÄÄÄÄÄÄÄ

dx'
d(x'-x'')

Xx'§ p̀2
ÅÅÅÅÅÅÅÅÅ
2 m

»E\=EXx'»E\     Ø   1ÅÅÅÅÅÅÅÅÅ
2 m Ÿ „ x ''Xx'§ p̀ †x ''\ Xx ''§ p̀»E\= 1ÅÅÅÅÅÅÅÅÅ

2 m
 Ÿ „ x '' ÑÅÅÅÅ

i
dÄÄÄÄÄÄÄÄÄ

dx'
d(x'-x'') ÑÅÅÅÅ

i
dÄÄÄÄÄÄÄÄÄÄ

dx''
Xx''|E\= -Ñ2

ÅÅÅÅÅÅÅÅÅÅÅ
2 m

dÄÄÄÄÄÄÄÄÄ
dx'

dÄÄÄÄÄÄÄÄÄ
dx'

Xx'|E\
= -Ñ2

ÅÅÅÅÅÅÅÅÅÅÅ
2 m

d2
ÄÄÄÄÄÄÄÄÄÄÄÄ
dx'2

Xx'|E\=EXx'»E\     Ø  d2
ÄÄÄÄÄÄÄÄÄÄÄÄ
dx'2

Xx'|E\=- 2 mEÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2 Xx'|E\   The solutions for this are Xx ' » E\ = e≤ikx   where k="###########2 mEÅÅÅÅÅÅÅÅÅÅÅÅ

Ñ2  or 

E= Ñ2  k2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m
.  Note that these eigenkets are normalized. Now we could have just as easily chosen sines and cosines as the 

basic solutions but this will have a drawback as we will see now.  This is a case where there is a degeneracy. i.e. there are 
two eigenkets with the same eigenvalue E. Remember we want to break this degeneracy, by finding some other operator 
which commutes with H

`
 which we can use to distinguish the states. If we look around for some likely operator, we might 

guess that it is p̀, the momentum. Lets see if the eigenkets we chose Xx ' » E\ = e≤ikx are eigenkets of p̀.  ÑÅÅÅÅ
i

dÄÄÄÄÄÄÄÄÄ
dx'

Xx'|a\ =pXx'|E\
Ø      ÑÅÅÅÅ

i
(±ikx)e≤ikx=pe≤ikx   So p=±Ñk. Notice that if we chose sine's and cosines these would not be eigenkets of p̀.  So 

now lets label the states with k instead of E

i.e. the eigenkets of  the free particle hamiltonian H
`

= p̀2
ÅÅÅÅÅÅÅÅÅ
2 m

 are †k\ and †-k\  where Xx†k\=e+ikx Xx†-k\=e-ikx  and E= Ñ2  k2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m
   

and p=±Ñk (maybe we should have labeled these »E,k\ and †E,-k\ but that sort of redundant dont you think?)

Now lets take a look at the characteristics of these eigenstates. First, lets look at how they evolve with time. 

†≤k, t\ = U
`

 †≤k] = e- i H
`

 tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÑ  †≤k_ = e- iÑ2  k2  tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 mÑ  †≤k_ = e-iwt†±k\   w= Ñ2  k2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 mÑ

= EÅÅÅÅÅ
Ñ

 as we know, it gets a phase. Now lets put it in 

position representation

Xx ' » ≤k, t\ = e-iwt e≤ikx = eiH≤kx-wtL    again, it is normalized correctly. It is a plane wave. If you follow the peak of the 
function, and increase t, x increases for k positive, and x must decrease for k negative. i.e. we have a wave that moves 
forward and backward as we might expect. So this "particle" just moves as you might guess, forward or backward 
depending on the momentum. 

Let's figure out d X p̀\ÅÅÅÅÅÅÅÅÅÅÅÅ
dt

which should be zero and d Xx̀\ÅÅÅÅÅÅÅÅÅÅÅÅ
dt

 which should be a constant - the velocity

d X p̀\ÅÅÅÅÅÅÅÅÅÅÅÅ
dt

=   iÅÅÅÅ
Ñ

 YAH` , p̀E\    = iÅÅÅÅ
Ñ

 ZA p̀2
ÅÅÅÅÅÅÅÅÅ
2 m

, p̀E\ = 0 so X p̀\ is a constantas should be
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d Xx̀\ÅÅÅÅÅÅÅÅÅÅÅÅ
dt

=   iÅÅÅÅ
Ñ

 YAH` , x̀E\    = iÅÅÅÅÅÅÅÅÅÅÅÅ
2 mÑ

 X@ p̀2, x̀D\ = iÅÅÅÅÅÅÅÅÅÅÅÅ
2 mÑ

  HX p̀@ p̀, x̀D] +  X@ p̀, x̀D p̀]M =  iÅÅÅÅÅÅÅÅÅÅÅÅ
2 mÑ

  X p̀]  H-2 iÑL =
 X p̀\

ÅÅÅÅÅÅÅÅÅÅÅÅ
m

=constant since X p̀\ is a 

constant. We can then write  Xx̀\ = Xx̀\0+  X p̀\
ÅÅÅÅÅÅÅÅÅÅÅÅ

m
t    where Xx̀\0=Xk, t = 0 » x̀ » k, t = 0\

Now just how particle like is this thing? The common notion of a  particle is something that occupies a finite extent in 
space. Lets see what the dispersion is in x. 

Xx̀\=Ÿ-¶
¶ „ xe-iH≤kx-wtLxe-iH≤kx-wtL=0

Xx̀2\ = Ÿ-¶
¶ „ x e-iH≤kx-wtL x2e-iH≤kx-wtL=¶

HDxL2 = Xx̀2\ - Xx̀\2 =¶   i.e. it covers all of space - its not particle like at all. This thing will satisfy the Heisenbergy 
because Dp=0 (figure it out!)

Now we can look at something much more particle like, but more complicated - that is a particle which is localized in x 
(which of course must have a corresponding spread in momentum) This is a gaussian wave packet whose initial condition 
in x representation is 

Xx †a, t = 0\ = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!a  H2 pL1ê4  e-x2ë4 a2
 eik0  x . We can then do a fourier transform of this to see what the spread in momentum is. 

Then we can evolve it in time. The integrals are  a pain. For the moment I will not do them here. They are in Liboff.
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