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Lecture 17 - Time dependence

Lets go over how we got the space dependence of stuff first. We found a translation operator T (Ax) =e hx
translated a ket as follows 7’ (OX)x)=x+6x). We worked with an infinitesimal version of thisthing ‘7’ (5x) =1-iox—x PX and

A% which

later applied this and infinite number of times to get the exponentia version. We can also show that e h isamomentum
iax iax iax
boost operator i.e. pe% [pH =(p'+a) e% | p')y so e% | p')=| p'+a)

We have not figured out how to get the time dependence of anything yet. One way, of courseisto look at thetime
dependent Schroedinger egn. which | gave to you before - Asyou recall, the way | got the Schroedinger eqn was a bit
haphazard. Here we will use the idea of time evolution (or time translation) to get it.

What isit that we want? We will start out with aket at tg |, tg) and we want to know what this ket is at some later timet
-thatis |a, t). Now its state at time t actually depends on the initial conditions at ty so for exactness we will call the ket at
timet

o, t; to). Later wewill drop the ; to in our notation. Lets define an operator U which will do the job for us - so we have
@, t; to) = U(t, to)le, to)

Now U should have several simple and obvious characteristics which we will use to deduce its form.

1) U isunitary - thiswill come about because we want to preserve the idea of probability-1 will show thisin a minute

2) U(ty, to) =U (tp, t)U (ty, ty) wheret, >t > 1o

3) lim (dt-0) Uty +dt, tg)—1

First lets seewhy 1istrueif we want to preserve theidea of probability. If the ket is properly normalized then at to
(e, to| @, to)=1. Wewould like this normalization to be true also at later timesso (a, t]a, t) =(a, to | 0o | @, to)=1
and this will be trueif O U=1, meaning U is unitary.

Now let usfirst deal with infinitesimally small timeintervals (just like we did before). Later we will look at finite times.
Thiswill turn out to cause complications. By construction we write U (to + dt, to y=1-iQdt. This means that property 3is
satisfied trivially. Now if U is unitary thiswill mean that {) is hermitian.

proof: 1=0"0=(1+:0"d)(1-1Qd)=1-10dt+iQ dt+ 0" Qy’
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The last term we take to be essentially zero to first order. This meansthat if thisisto betrue ) = Q' i.e. Q ishermitian,

Now before we use property 2, let us see what the units of € must be. 2t must be unitless so {) must have the units of

L/time or frequency - i.e. w. Now recalling how # cameinto the picture in the case of momentum, letslook at the quantity

#iw which has units of energy. If welet ) = % where H is the hamiltonian operator with units of energy, this works out.

It turns out that thisis true. We have to deduce this from experiment. So now we have
A _(3i_ A
0=(1-7% of
Now lets use property number 2) - thiswill get us to the Schroedinger egn.
O (t+dt, to) =0 (t+dt, D0 (t, to) = (i—i % dt) Ot ty) =
O (t+dt tg)- U (t,tg) _

Ot+t, to) -0t to) =i L at0(t 1) » LE®0 0= ;A g o

i L0 (t, )= HU (t, t)) The Schroedinger egn for U (t, to) !
Now lets operate on aket i1 < U (t, to) l, to)= H U (t, to) [, to) and notethat |a, t)=U (t, to) e, to) S0 we have
ih < |, )= Hla,t)  The Schroedinger eqn for a state ket

One can now consider several cases of this, depending on the nature of H We will solve the egn for U
A ‘A
1) Suppose the Hamiltonian isindependent of t, then U (t, tg) = &' & 710

proof: to do thisright, we really have to go to an expansion but we will sort of cheat and treat this thing like an ordinary
egn instead of the operator egn whichiit is

in 40 (t, to)=in e 0 %e—i Hit-to=H e At-t0= { (t, to)
another more correct way to do thisisto start with the infinitesimal form of U=(1-i ';l';dt) and apply it many times so

~ ) N N N - A ~
Ut to) = ,\L—mm[l —i % (tN—tO)] =e ' n 0 Note that this form also has the property that ast — to then U—0.

Thisisthe form for U which will most often concern usin this class. | will list two other possibilities
2) Suppose the Hamiltonian depends on time, but the Hamiltonians at different times commute with one another, i.e.

[H (t1), H (t,)]=0. An example of this sort of Hamiltonian is spin magnetic resonance in which thereis a B field whose
strength varies with time, but whose direction is fixed. In this case

J (Y it A g
Ut =e () ROt

t o g 2
ﬂOH(t)dt |
-

proof: U = i—(i;)jt';lq(t') dt+ ()]
a=(3)An+F )’ Z[W]H () (If the H's a different times commute)
=AOIL-(+) LA dI(5)=A0(3)
3) General case - thisis called the Dyson Series
Ot to=2+) " (3) fidt [ty [12dts.... [*2dtn Ht)H (L) (to)... A (t)
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tl > t2 > t3“_ > tn

Time Dependence of Energy Eigenkets
Thetask isto find the time dependence for any ket |a). Let'sfirst do it for an energy eigenket |a) where H|a) = Eq|a). We

. A _
start with |a) ket at to = 0 and then evolve it withthe U = e % '. We can write

0-e' =y, 2 @ 167 U a0 1= Sl T ) EI=E el T )=
S sl @l T =S laye

So U= la)e Ty

So now we can find |a,t) if we know |a, to). Wefirst expand it in energy eigenkets then apply U

@, to) = Xa [@) (@' @, To) = Xa Cald)

\a,t>=0|a,to>=z |a>e"Tt<a|ato) Z cye' 7 'la’)  andwe can consider

. Ey
Cal)=cp e 7

. Ey
Now if | e, ty)=la") then |a,b)=la") e 7
unchanged

i.e. only a phaseisadded and the probability (@t |a,t)= (a, to e, to) iS

Quantum Dynamics
Before starting, | would like to remind you of avery important theorem from lecture 13 - that is

Theorem: Supposethat A and B are compatibleobservables|i.e.[A, B| =
andtheeigenvaluesof A arenon — degenerate.
Thenthematrix elements(a | B | aj) areall diagonal. (Recall that the matrix elementsof A arealready diagonal if
| &) areused aseigenkets)
A simple way to think about this for now, isto assume that commuting observables have the same eigenkets Thisisavery
important fact. It means that if we have a complete set of eigenkets for an observable which spans the relevant space - then

any state in that space can be expanded in those eigenkets - in particular - if one has ainitia ket | a, tg), then
| @, t) can beexpanded inthoseeigenkets. Sowecan set up away to solvefor thetime dependenceof aket.

1) Find an observable A that commuteswith H (very often it will be H itself), and its eigenkets
2) expand theinitial ket | @, tg) in those eigenkets

3) apply the time evolution operator U=y ,|a)e” 5 Yal

Now before | do some examples, let's find out how the expectation value changes with time.

Letsfind (B) where B does not necessarily have to commutewith H (or &), with respect to the energy eigenstates. That
iswewant to find (at|B|a,t)

Ata A 7I~t

@ tBla,ty =@U0 BUla) <a|e ila)= <a|e 'Be” a' 'lay=(a|B|a’) independent of time!

Since the expectation of any operator with respect to an energy eigenvalue, is independent of time, we call energy
eigenkets - stationary kets.
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Now letsfind the expectation value of B with respect to some more compl icated state |a,t=0)=}, cy |a")

. E
(a,t1B]q, t> - (TaCa” (@' )e" g "—‘(za Car la")=(Tq Ca* (@' |e+'—‘)B<za cr€ T Ya")=Ng 4 Ca” Car (@'
Bla"e™ (Ea (ELh@

=3 0 Ca” Car (@' |Bla"e ! where w =

Example - particlein a box
0 O<x<a

Let's now try to find the time dependence of the particlein abox. First H = L +V(X) where V(x)={
2m coXx=0ora

Thisistime independent so 0@ to) = “ to)
h2 7r2
2ma?

The eigenfunctions in the x representation are ¢n(X) =<x|n>:\/ % S n(%) and the energy eigenvalues are E,, = n?

First letsfind the energy dependence of the n=2 eigenfunction |2), which means that at time=0 the state of the particlein
the box is <X|2>‘\/ 2 sn ﬂ) and the energy eigenvalueis 4 ;i;i

2020 2= T27e" F2)  So(xi2=yZ Sn(ZX)eiert wherew, = 22212

h mal

So aswe saw before, all that happens is that there is an extra phase factor e 2t in the wave function. The probabilities
don't change. What about the expectation value of H

2>=<2

Letslook at the expectation value of momentum. Remember in the x representation (x| P | a)z? dlx, X'|a)
B2y B2y . N o

<2t|p|2t>-< 2>—(2e PipetE [ 2)= @1 p12 =[dx@Ix) (x| pI2=

—fdx<2|x> _ (X' |2>—— —fdxsm(z’a”‘) d —sin(#X)=2 % Z—;dex'sin(%)coe(%):o and again itistime

dx' a i

. E

+|;tA —iﬂt +iﬁtA _j =2t _ A _ _ H H
e'7m'He' R e tAe’ T ’2>_<2|H|2>_<2|E2|2>_E2|ndependentoft|meas

(2,t|H|2,t)=<2

we expected.

+|—t pe"_t

independent.

So now letstry amore complicated initial condition. (x|a,t=0)=y/ £ w

Thefirst thing we have to do is to expand in terms of the energy eigenkets. The right way to do thisisto do afourier
transform and find the expansion coefficients. Thisinitial condition here is such that it is easy to figure out the expansion

SO (X| @, t=0) =4 i Sn2mja+28nmia) \/_ (x|2>+ . (x|1) Notethat thisis normalized correctly.

V5
Now wewill evolveitintime. start with |a,t=0)= |2>+ |1>
la,t) =0 |2>+—|1>)=—e t|2>+i - |1>= |2>+ 7 )
. q —
— —I _ 27‘()( —i t 2 o X\ —
(Xah=—ke” # 2+ * iy = e w/ sin(22% )L 7 \/g sin( ) =

L Zjeztsne nx/a>+2e-'w1t sin(x /)]

Letslook at thetime dependence of (E)

(@ tiFlaH=(7e" i 2+ Fe" 0 <1|)H(f ‘—t|2>+ )=
(= *'—t<2|+ +'—t<1| (s "—tH|2>+— "_‘H|1>)=
+|lt

(& <2|+—e*' (ke E2|2>+—e*'*tE1|1>)—
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%e”%t%e’i%thJr%e”%‘t% = 'E; = 1E2+ E: which aswe know isindependent of time.
How about the time dependence of p
(& +'—t<2|+ +'—‘<1|)r>( "—‘|2>+ o' )=
(= *'—t<2|+ = e*'—t<1| N7 "—tp|2>+ "—tp|1>)—
(\/— T2 )( |2>)+(\/— e <2|)(\/— e |1))+( e )( tID|2>)+
( o <1| )( i3|1>):
—<2|p|2>+2e*' % <2|p|1>+2e*' . <1Ipl2>+ ApiL=
T 22| i3I2>+ge““’t<2I p|1)+ge*"“t<1| i3I2>+g AlpIn= where w=%

Now (nlpIny=[dx(n | ) (x'| pIm==[dx‘(n| x) = (x| m=2 2 fdx'sin( XX ) = sin( 22X )=

a
L2 I [qxsin(f2X cog( £ )=0

(mpINy=[dx(m| X'y (x| p| )= fdx(mlx) - (X [m=2 2 [dx'sin( X ) gin( X )=

dx a

% . [Bdx'sin( 2 mrx Joos( 22X LS )_T 2nfPZ dx’ sm( mrx Jeog( "2 LS )—— —nfo dysin(my)cos(ny)=

2 1 SN(n-m)x . sin(n+m) X
an[ 2(n-m) + 2(n+m) ]{Oﬂ} =0

-l -

So (py=0 always which makes sense since there is no external momentum to change it, and we have momentum
conservation.

Example: Spin Precession in a magnetic field
For an electron in a magnetic field the hamiltonian is
H =ﬁ-§=—(%)§-§ (eisnegative) Now letslet B be astatic magnetic field in the z direction so

A=-(2)=— (g, =-20, wherew=12

Now H and S, (or ;) commute so lets use the eigenkets of S, as the kets we will use to expand i.e. |+) and |-).

_fuu

There have eigenvalues of H of E, =
Now we can write H=w$, so the time evolution operator is exp|— '—H—i)—exp( loSt St lwSty

We will have someintial ket |@) = ¢, |+) + c_|-)

iwt

|whSt Jl=c, exp(— L) +) + ¢ exp( “)l-)

U la) = |, t)y=c, exp(~ ""S‘ 105Uy 1 4) + ¢ exp(—
So now letstry some specific intial conditions

First let|a)=|+) soc, =1 andc_=0 |a,t)=exp(- '“t)|+> and as before, there is just a phase

iwt

Now letslet [@) = |Sc+) = 7_15- +) + 713. -) thenla,t) = e‘T l+) + ez )

Trz‘ 75‘
Now itsinteresting to figure out the probability that the stateisin |S, +) later.

_( 1 1 1 et 1 ot 2_
[ (Sctla, t) IZ_I(\/_§<+‘+W<_|)(W8 2 |+>+7—2—92 |—>)]—
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T
L ot et 2 cosz%fors(+
I—eZi—62|={. t
2 smz%fors(—

Now lets figure out the expection value of S,, S, and S,

There are two waysto do this. Thefirst isjust to figureit out, the second isto use aformulafrom before, i.e.

(A = Sqa'|@'la) |2, Wewill doit both ways. First we will use the formula
(50 = iCOS2 ﬂ+(-E)Sin2 ﬁzicoswt

tofigureout (S,) wewill use S, = Zi (§, - &

-)
iwt N
Syl t1§ o)=L e F (1 Lo -] 26 -8) L e T+ Let )
%(_Z_ e+iwt_11_ e—iwt)zﬁ_sinwt

&=L et ()+ Lot <—|)éz(fe s Let )

ﬂ

g(% e+7<+|+%e S |)(—e s '+>_TeT [-))=2 1[1-1]=0

So summing up (S)zgcos wt (S,,)zgsin wt (§,)=0 Soit lookslike the electron spin just goes around in acircle -i.e.

spin precession!



